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Abstract 

Land cover data are regularly delivered in a planar raster geospatial data model. The raster data model 

was developed at a time when geospatial data handling on the surface of the ellipsoid was demanding 

and, therefore, all data were projected to the plane. This approach in the modern computer 

environment is not necessary. Discrete global grid systems (DGGSs) have emerged as a new geospatial 

data model and georeferencing framework over the past couple of decades. DGGSs represent 

hierarchically organized grids that enable progressively finer tessellation of the sphere or ellipsoid. The 

advantage of this data model over the planar raster one is, first and foremost, its better adaptation to 

the actual shape of the earth's surface. The goal of this thesis is to develop DGGS that is suitable for 

storing and handling global land cover data and that has quadrangular cells of equal area. 

Additionally, this DGGS has to exhibit high tessellation geometrical uniformity, i.e., high stability of 

cells’ shapes. We started from already available DGGS implementation, specifically, rHEALPix 

DGGS, on which we applied two modifications. The first was related to increasing computational 

accuracy and speed for converting geodetic to authalic latitude and vice versa—a crucial calculation 

component that enables defining rHEALPix DGGS not only on spheres, but also on ellipsoids of 

revolution. The second modification was related to applying different approach in defining DGGS 

grids on ellipsoids and spheres; the approach that we expected would increase stability of cells’ shapes. 

Results confirmed that this expectation was fulfilled. We also quantitatively compared this modified 

version of the rHEALPix DGGS that we refer to as QPix DGGS, with the traditional approaches of 

tessellating the earth’s surface by raster model georeferenced in projected or geographic 2D coordinate 

reference system. Results showed that from the three analyzed tessellation approaches, QPix DGGS 

provided tessellation that has the highest uniformity. Finally, in the last part of the thesis, we 

successfully applied rHEALPix and QPix DGGSs on land cover data. Therefore, we have overall 

demonstrated the applicability of DGGSs for storing and handling global land cover data, while 

eliminating or at least reducing some of the challenges of raster models for such purposes. 

Key words: authalic latitude, compactness, DGGS, discrete global grid systems, ellipsoid, GIS, global 

data, land cover, map projections, rHEALPix, sphere  
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Sažetak 

Podatci o pokrovu zemljišta najčešće se isporučuju u obliku ravninskog rasterskog geoprostornog 

modela podataka. Rasterski model podataka je razvijen u vrijeme kada je rukovanje geoprostornim 

podatcima na površini elipsoida bilo zahtjevno pa su se svi podatci projicirali u ravninu. Takav pristup 

u modernom računalnom okruženju nije nužan. Već nekoliko desetljeća, teoretski i praktično, 

razvijaju se sustavi diskretnih globalnih mreža (DGGS) koji se mogu promatrati kao geoprostorni 

model podataka, ali kao i model za georeferenciranje. DGGS predstavlja hijerarhijski organizirane 

mreže koje omogućuju progresivno finiju teselaciju sfere ili elipsoida. Prednost ovog modela u odnosu 

na ravninski rasterski model je prije svega to što je bolje prilagođen stvarnom obliku Zemljine 

površine. Cilj ovog rada je razvoj DGGS-a koji je prikladan za pohranu i rukovanje globalnim 

podatcima o pokrovu zemljišta i koji ima četverokutne ćelije jednakih površina. Osim toga, dodatan 

zahtjev je i da se DGGS treba odlikovati visokom geometrijskom pravilnošću teselacije, odnosno 

visokom stabilnošću oblika ćelija. Polazeći od rHEALPix DGGS kao već dostupne implementacije 

DGGS-a, uveli smo dvije izmjene. Prva se odnosila na povećanje točnosti i brzine preračunavanja 

geodetske u ekvivalentnu širinu i obrnuto, što je ključne komponente koja omogućuje definiranje 

rHEALPix DGGS-a ne samo na sferama, već i na rotacijskim elipsoidima. Druga izmjena se odnosila 

na primjenu drugačijeg pristupa u definiranju DGGS mreža na elipsoidima i sferama. Očekivali smo 

da će ovaj pristup povećati stabilnost oblika ćelija, što su rezultati i potvrdili. Također smo 

kvantitativno usporedili ovu izmijenjenu verziju rHEALPix DGGS-a, koju smo nazvali QPix DGGS, 

s tradicionalnim pristupima teselacije Zemljine površine pomoću rasterskog modela koji je 

georeferenciran u projekcijskom ili geografskom 2D koordinatnom referentnom sustavu. Rezultati 

su pokazali da od tri analizirana pristupa, QPix DGGS definira teselaciju s najvećom geometrijskom 

pravilnošću. Konačno, u završnom dijelu rada, uspješno smo primijenili smo rHEALPix i QPix 

DGGS-ove na podatke o pokrovu zemljišta. Tako smo sveukupno pokazali primjenjivost DGGS-a za 

pohranjivanu i rukovanje globalnim podatcima o pokrovu zemljišta, uz istovremeno eliminiraje ili 

barem reduciranje nekih od izazova rasterskog modela za takve svrhe. 

Ključne riječi: DGGS, ekvivalentna širina, elipsoid, GIS, globalni podatci, kartografske projekcije, 

kompaktnost, pokrov zemljišta, rHEALPix, sfera, sustavi diskretnih globalnih mreža  
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1 Introduction 

Before the development of artificial Earth satellites and remote sensing technologies, acquiring data 

over large areas of the surface of the Earth was a tedious manual process. Data acquired by sensors 

onboard Earth observation (EO) satellites and the development of methods for processing those data 

have marked the beginning of an era of the (semi)automatic production of accurate datasets related 

to the Earth’s surface. When discussing data related to the Earth’s surface, two terms that are usually 

first introduced are: land cover and land use. Di Gregorio and Jansen (1998) define land cover (LC) 

as “observed (bio)physical cover on the Earth's surface” and land use (LU) as  “activities and inputs 

people undertake in a certain land cover type to produce, change or maintain it”. Therefore, LC can 

be “observed” from the satellite images, either by human visual interpretation or by means of some 

automatic computerized method, while LU, in general, cannot. However, these terms are often used 

interchangeably, especially because some land use information can be extracted from satellite images 

(e.g., vegetated areas used for agriculture). LC and LU data are usually classified in multiple classes, 

and it is thus common for a single LC/LU dataset to include classes that are related to both land cover 

and land use. In this case, generally only a fraction of all classes is related to the land use and most of 

them are associated with land cover. Because of this and for the sake of simplicity, LC/LU datasets 

are most often referred to as land cover data in this thesis, although it is possible that they also include 

land use classes. 

United Nations Committee of Experts on Global Geospatial Information Management 

(UN-GGIM) included land cover and land use as one of the 14 global fundamental geospatial data 

themes (UN-GGIM, 2019). These themes serve as a foundation that is supporting the United 

Nations Integrated Geospatial Information Framework (UN-IGIF) and other global geospatial 

information management initiatives (UN-GGIM, 2019). UN-GGIM considers land cover and land 

use data as needed to support meeting 11 out of 17 Sustainable Development Goals (UN-GGIM, 

2019) which emphasizes its importance and vast demand for such data. 



1 INTRODUCTION 

2 
 

1.1 Examples of global land cover products 
LC data can be general or thematically focused. General LC data classify (bio)physical cover of the 

earth’s surface in multiple classes, without focusing on particular type of land cover, while thematic 

LC data are aimed at specific LC, for example, built-up land (García-Álvarez and Nanu, 2022). 

Various general and thematic LC datasets that have global coverage are becoming available in recent 

years. Some of the most prominent general LC datasets with global coverage and pixel sizes of less 

than 30 m are: ESA (European Space Agency) WorldCover (Zanaga et al., 2021, 2022), Dynamic 

World (Brown et al., 2022), Esri Land Cover (Karra et al., 2021), GLC_FCS30D (GLC stands for 

global land cover, FCS for fine classification system, 30 for 30 m pixels size, and D for dynamic; X. 

Zhang et al., 2024), and GLAD GLCLUC (Global Land Cover and Land Use Change dataset from 

the Global Land and Discovery group; Potapov et al., 2022). In the following sections, each of these 

datasets is briefly described. 

1.1.1 ESA WorldCover 

ESA WorldCover is a global land cover map (Figure 1.1) that is available for years 2020 (Zanaga et al., 

2021) and 2021 (Zanaga et al., 2022) and is mainly produced from the optical multispectral 

Sentinel-2 Level-2A (L2A) images and radar Sentinel-1 ground range detected (GRD) products (Van 

De Kerchove et al., 2020). Additionally, a range of auxiliary datasets were used either during 

classification or for post-classification application of expert rules, including Copernicus 30-m digital 

elevation model (DEM; European Space Agency and Airbus, 2022),  Ecoregions2017 (Dinerstein et 

al., 2017), TerraClimate data (Abatzoglou et al., 2018), OpenStreetMap data 

(https://www.openstreetmap.org/), Global Surface Water Explorer data (Pekel et al., 2016), Global 

Mangrove Watch data (Bunting et al., 2022) and some others were also used (Van De Kerchove et al., 

2020, 2022). Zanaga et al. (2020, 2022) state that land cover was classified by CatBoost algorithm 

into 11 land cover classes (listed on Figure 1.1) that were defined by the UN Food and Agriculture 

Organization (FAO) Land Cover Classification System (LCCS; Di Gregorio and Leonardi, 2016). 

ESA WorldCover maps for years 2020 and 2021 do not use completely the same input data and 

classification procedures, which means that they are not suitable for analyzing changes in land cover 

since some changes might be a result of these differences and not of a real change in land cover. ESA 

https://www.openstreetmap.org/


1 INTRODUCTION 

3 
 

WorldCover land cover map with discrete classes is accompanied with the quality raster that indicates 

per-pixel quality of the input Sentinel-1 and Sentinel-2 observation (Van De Kerchove et al., 2022). 

 
Figure 1.1 Visualization of the ESA WorldCover land cover map for 2020 (Zanaga et al., 2021) over city of Dubrovnik, 

Croatia, along with the primary input data used for its creation: Sentinel-2 and Sentinel-1 images. Sentinel-2 (red – green 

– blue composite: band 4 – band 3 – band 2) and Sentinel-1 image (red – green – blue composite: VV – VH – VH/VV; Kumar, 

2021) on this figure were both acquired on July 28, 2020. 

Regarding the classification quality, Tsendbazar et al. (2021, 2022) report that overall 

classification accuracy on a continental level ranges from 68% for Australia and Oceania to 81% for 

Asia and globally is around 74% for 2020 and for 2021 it ranges from 73% for Australia and Oceania 

and for Eurasia to 82% for Asia on a continental level and is around 77% on a global level. For assessing 

classification quality they used an adapted validation dataset that was developed for validating 

Copernicus Global Land Service Land Cover at 100 m resolution (CGLS-LC100; Buchhorn et al., 

2020) that has a global coverage and is available as an annual land cover dataset from 2015 to 2019. 

Venter et al. (2022) also performed validation of the ESA WorldCover land cover data (only for 2020), 

but with different validation datasets. The first validation dataset they used is the dataset provided by 

Brown et al. (2021) that was created for validating the Dynamic World land cover (Brown et al., 2022) 

and the second is LUCAS (Land Use/Cover Area Frame Survey) data (d’Andrimont et al., 2024) for 

2018 that are limited to European Union (EU) countries. Based on the first validation dataset, they 

calculated an overall accuracy of 65%, and based on the second dataset, overall accuracy for the EU 

countries is 71%. It should be noted however that one of the aims of Venter et al. (2022) was to 
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compare classification accuracies of ESA World Cover, Dynamic World and Esri Land Cover datasets 

so before calculating classification accuracy they have aggregated some of the ESA WorldCover classes 

so that they correspond to the Dynamic World and Esri Land Cover classes. Zhao et al. (2023) 

developed a stratified random sampling dataset for global land cover validation and found that overall 

classification accuracy for ESA WorldCover for 2020 is around 71%. 

ESA WorldCover dataset is delivered as a COG (Cloud Optimized GeoTIFF (Geographic 

Tagged Image File Format)) raster tiles covering 3° × 3° georeferenced in the WGS 84 (World Geodetic 

System 1984) geographic coordinate reference system (CRS), referenced under code 4326 in the 

EPSG (European Petroleum Survey Group) Geodetic Parameter Dataset (EPSG:4326; EPSG, n.d.-

c). Rasters tiles with land cover data are compressed with lossless DEFLATE compression (Deutsch, 

1996) and pixel values are stored as unsigned 8-bit integers. Each pixel has a dimension of 0.3” × 0.3” 

which at the equator for the WGS 84 ellipsoid (EPSG:7030; EPSG, n.d.-a) corresponds to 

approximately 9.28 m in east-west direction and 9.21 m in north-south direction. 

1.1.2 Dynamic World 

In contrast to all other LC datasets that are being analyzed, Dynamic World (Figure 1.2) is the only 

one that is not an aggregated annual product but is produced from every Sentinel-2 image as it is 

being acquired, provided that it has less than 35% of cloud coverage (Brown et al., 2022). This makes 

the Dynamic World a near real-time (NRT) land cover product. Classification is performed by a deep 

learning (DL) model, namely, fully convolutional neural network (FCNN) model that was trained 

on approximately 24 000 tiles of 510 × 510 pixels (Tait et al., 2021) extracted from the Sentinel-2 

images and which were at least 70% labeled by drawing vector polygons that refer to one of the nine 

classes (listed on Figure 1.2), with a minimum mapping unit (MMU) of 5 × 5 pixels (Brown et al., 

2022). A single model obtained in the training phase that does not only account for spectral, but also 

for spatial characteristics of each class, is used to classify LC on existing and newly acquired Sentinel-2 

images. Brown et al. (2022) further explain that the result of the application of the trained DL model 

on Sentinel-2 images are land cover prediction for each pixel and for each class. Final discrete LC map 

is produced by taking the class with the highest probability as a final class for each pixel. As can be 

seen on Figure 1.2, Brown et al. (2022) suggested an innovative approach in visualizing discrete LC 

map by overlaying a hillshade produced from the class probability values of the corresponding class 
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with the highest probability. This makes visible features within a specific LC class patch that 

otherwise would not be visible. Production of the Dynamic World LC data is performed on the 

Google Earth Engine (GEE) platform (https://earthengine.google.com/) were also all products (LC 

map with discrete classes and per-class predictions) are available. 

 
Figure 1.2 Visualization of the Dynamic World land cover map (Brown et al., 2022) over city of Dubrovnik, Croatia, along 

with the primary input data used for its creation: Sentinel-2 images. The Sentinel-2 image on this figure (red – green – blue 

composite: band 4 – band 3 – band 2) was acquired on July 28, 2020, from which Dynamic World land cover map on this 

figure was derived. 

Brown et al. (2022) assessed the quality of land cover class predictions by the deep learning 

model and thus the capability of model generalization to new, never-before-seen data, by comparing 

model predictions with hand-labeled 409 tiles of 510 × 510 pixels (Brown et al., 2021) that were 

extracted from the training dataset and were not used in the model training phase. Each tile was 

labeled by three experts and overall accuracy for labels that at least two experts assigned in the same 

land cover class is found to be 73.80%. Venter et al. (2022) also performed classification accuracy 

assessment for the Dynamic World data. They first made an annual Dynamic World composite for 

2020 by taking the land cover class with the highest annual frequency as land cover class for specific 

pixel. By using the first validation dataset (the same validation dataset used by Brown et al. (2022)), 

they calculated an overall accuracy of 72%, and by using the second one (LUCAS dataset) they found 

overall accuracy to be 66%. 

https://earthengine.google.com/
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As already mentioned, Dynamic World data are available for download through GEE. Since 

Dynamic World data are produced from the Sentinel-2 images, the default download option provides 

Dynamic World tiles in the same CRS that is used to georeference Sentinel-2 images, i.e., one of the 

60 projected CRSs based on WGS 84 ellipsoid (EPSG, n.d.-a) and Universal Transverse Mercator 

(UTM) projection (Gascon et al., 2014). Again, by default settings, raster data are provided as an 

uncompressed GeoTIFF file with pixel values stored as single-precision (32 bits) floating-point 

numbers. Pixel size is the same as the pixel size for the highest resolution Sentinel-2 bands, which is 

10 × 10 m in a projected UTM-based CRS. 

1.1.3 Esri Land Cover 

Esri Land Cover dataset is produced from the Sentinel-2 images as an annual product from 2017 to, 

currently, 2024. Land cover is classified in nine discrete land cover classes (Figure 1.3) by applying 

convolutional neural network (CNN) deep learning model that was trained using the same training 

dataset used for training the classification model of the Dynamic World dataset (Karra et al., 2021). 

As Karra et al. (2021) explain, classification model that was applied includes segmentation, which 

reduces the salt and paper effect that is often present in land cover maps. For some applications, this 

characteristic of Esri Land Cover data might be undesirable as it might be perceived as too generalized, 

especially where higher frequency of mixed pixels is present. On the other hand, this dataset is 

especially interesting for land cover change analysis because the same model is used for classifying land 

cover for different years and thus interannual classification stability is expected to be high. 

Kara et al. (2021) performed validation for their first land cover product for 2020 by using 

the same 409 labeled tiles of 510 × 510 pixels that were used for validating Dynamic World data and 

report overall accuracy of 85%. Venter et al. (2022) also calculated accuracy of Esri Land Cover for 

2020 using the same dataset, but they obtained accuracy of 75%. This difference of 10% can be partly 

attributed to the fact that Kara et al. (2021) used only those labels from the validation dataset for 

which all three experts selected the same land cover class (approximately 27 million pixels according 

to Brown et al. (2022)), while Venter et al. (2022) used a dataset that consists of 72 million pixels, 

obtained from validation labels by allowing some level of disagreement between experts’ annotations. 

Based on LUCAS data, Venter et al. (2022) calculated overall accuracy of 63% for land cover data 

covering EU countries. 
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Figure 1.3 Visualization of the Esri Land Cover data (Karra et al., 2021) for 2020 over city of Dubrovnik, Croatia, along with 

the primary input data used for its creation: Sentinel-2 images. The Sentinel-2 image on this figure (red – green – blue 

composite: band 4 – band 3 – band 2) was acquired on July 28, 2020. 

Esri Land Cover data are available for download through Esri’s Living Atlas Land Cover 

Explorer (https://livingatlas.arcgis.com/landcoverexplorer). Data are provided as GeoTIFF tiles with 

extent corresponding to the grid zone designation (GZD) areas of the Military Grid Reference System 

(MGRS), covering, in general, 6° across parallels of latitude and 8° across meridians of longitude 

(NGA Office of Geomatics, 2014). Tiles are georeferenced in the same CRS as Sentinel-2 images – 

projected CRS based on WGS 84 ellipsoid (EPSG, n.d.-a) and UTM projection, with pixel 

dimensions of 10 × 10 m. Pixel values are stored as 8-bit unsigned integers and GeoTIFF rasters are 

compressed with the lossless LZW (Lempel–Ziv–Welch) compression (Dheemanth, 2014). 

1.1.4 GLC_FCS30D land cover data 

GLC_FCS30D is a global land cover dataset that is available for every five years from 1985 to 2000 

and annually from 2000 to 2022. Land cover data were generated on the GEE, mainly from the 

Landsat mission satellite images and additionally from DEM data and an auxiliary datasets for 

impervious surface and wetlands land cover class that were used in the post-classification phase to 

increase final classification accuracy for these two land cover classes (X. Zhang et al., 2024). As Zhang 

et al. (2024) explain, land cover classification algorithm is quite advanced; it includes mechanisms for 

detecting changes in pixel values over the years and ensuring temporal classification stability (i.e., 

avoiding false changes), and it also uses locally-adapted (per each 5° × 5° tiles) random forest (RF) 

https://livingatlas.arcgis.com/landcoverexplorer
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classification models. Land cover is classified by employing hierarchical classification system, with 35 

classes on the third hierarchical level, 17 on the second, and 10 (shown on Figure 1.4) on the first one 

(X. Zhang et al., 2024). 

Regarding the classification accuracy, Zhang et al., (2024), based on a dataset they specifically 

created for independent validation purposes, calculated an overall accuracy of 80.9% for 10 first-level 

classes and 73.0% for 17 second-level classes, both for 2020. They also used LUCAS data from 2006, 

2009, 2012, 2015, and 2018 to assess classification accuracy for EU countries and found that for all 

years overall accuracy is around 82% for 10 first-level classes. To the best of our knowledge, 

GLC_FCS30D can thus be considered as the highest quality long-term global land cover product 

that is available from 1985 to 2022 in a 30-m resolution. 

 
Figure 1.4 Visualization of the GLC_FCS30D land cover data (X. Zhang et al., 2024) for 2020 over city of Dubrovnik, 

Croatia, along with the primary input data used for its creation: Landsat mission images (Landsat 8 image in this case). The 

Landsat 8 image on this figure (red – green – blue composite: band 4 – band 3 – band 2) was acquired on August 26, 2020. 

GLC_FCS30D data are provided by Liu et al. (2025) as 5° × 5° LZW-compressed GeoTIFF 

tiles with 8-bit unsigned integer pixel values. Each GeoTIFF raster consists of multiple bands, one for 

each year for which data are available. Data are georeferenced in 2D geographic WGS 84 CRS 

(EPSG:4326; EPSG, n.d.-c), with pixel size of approximately 0.97” × 0.97”, which at the equator for 

the WGS 84 ellipsoid (EPSG:7030; EPSG, n.d.-a) corresponds to approximately 30.00 m in east-west 

direction and 29.80 m in north-south direction. 
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1.1.5 GLAD GLCLUC land cover data 

GLAD GLCLUC is global land cover product produced by Potapov et al. (2022), mainly form the 

Landsat mission ARD (analysis ready data) satellite images, also produced by GLAD (Potapov et al., 

2020), and is available for every five years from 2000 to 2020. They used a different classification 

models for five main land cover classes: tree cover (including wetlands and height of vegetation), 

cropland, built-up area, water, and permanent snow and ice. Built-up areas, croplands and snow/ice 

are classified as binary yes/no classes, while vegetation and wetland vegetation are classified into 

multiple classes; short vegetation into different classes based on coverage percentage, and higher 

vegetation (i.e., trees) into different classes based on their height, from 3 to 25 m with 1 m resolution. 

Water areas are classified in eight classes, based on the percentage of year they really are covered with 

water. This approach to classification gives users flexibility in generating derived land cover maps with 

discrete classes based on class definitions that are suitable for specific applications. Figure 1.5 shows 

GLAD GLCLUC land cover data for 2020, however, classes in the legend are aggregated for the 

vegetation and wetland vegetation. 

In addition to Landsat ARD data, for determining tree cover height, Potapov et al. (2022) 

used Global Ecosystem Dynamics Investigation LiDAR (GEDI) measurements to build a regression 

tree model. For classifying cropland, they applied ensemble of decision trees, for built-up areas, CNN 

model trained on OpenStreetMap (OSM) data (https://www.openstreetmap.org/), and for water 

and snow and ice classes, again ensemble of regression trees. 

Potapov et al. (2022) performed classification accuracy validation, separately for each of the 

five main classes and they report overall accuracies that are higher than 97% for the extent of the 

cropland, permanent snow and ice, and vegetation classes. Permanent water is also classified with high 

accuracy; 99% user’s and 86% producers accuracy, while dynamic water achieved relatively low user’s 

accuracy of 72%, but high producer’s accuracy of 95%. Finally, for the extent of built-up areas, 

achieved accuracy is the lowest. User’s accuracy is approximately 64%, and producer’s is around 39%. 

Potapov et al. (2022) attribute this low accuracy to the fact that built-up areas are heterogeneous 

within a 30 × 30 m Landsat pixel. 

https://www.openstreetmap.org/
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Figure 1.5 Visualization of the GLAD GLCLUC land cover data (Potapov et al., 2022) for 2020 over city of Dubrovnik, 

Croatia, along with the primary input data used for its creation: Landsat mission images (Landsat 8 image in this case). The 

Landsat 8 image on this figure (red – green – blue composite: band 4 – band 3 – band 2) was acquired on August 26, 2020. 

GLAD GLCLUC land cover data are available for download through GLAD website 

(https://glad.umd.edu/dataset/GLCLUC2020) as 10° × 10° LZW-compressed GeoTIFF tiles with 

8-bit unsigned integer pixel values. Different GeoTIFF files are provided for different years. Data are 

georeferenced in 2D geographic WGS 84 CRS (EPSG:4326; EPSG, n.d.-b), with pixel size that 

correspond to the GLAD’s Landsat ARD data (Potapov et al., 2020), which is 0.00025° × 0.00025°. 

At the equator for the WGS 84 ellipsoid (EPSG:7030; EPSG, n.d.-a), this pixel size correspond to 

approximately 27.64 m in east-west direction and 27.83 m in north-south direction. 

1.2 Problem statement and research hypotheses 
From the previous sections, it is clear that the domain of developing global land cover data is under 

significant advancements. The foundation for producing this data, especially when generating maps 

for vast regions or the entire planet, rests upon three key elements: freely accessible imagery from 

remote sensing satellites, advanced classification algorithms, and powerful cloud computing 

infrastructures (Cuypers et al., 2023; Venter et al., 2022). Each of these components is currently in a 

state of rapid evolution. Among the most remarkable of these advancements are improvements in the 

spatial, spectral, and temporal resolution of satellite images (C. Zhang and Li, 2022), as well as the 

progress of deep learning methodologies. As a direct consequence, the overall quality and reliability 

of land cover datasets are consistently rising. 

https://glad.umd.edu/dataset/GLCLUC2020
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An underlying consideration for land cover data is the specific format in which they are 

organized and spatially referenced. As previously noted, satellite images are in general a primary 

source for generating land cover data. Since they are typically provided in a raster data model, land 

cover data are also predominantly distributed in raster form. Emerging formats like Cloud-optimized 

GeoTIFF (COG) or GeoZarr are being developed to better align with today's large data volumes and 

cloud computing environments (Abernathey et al., 2021), however they are still built upon the flat 

raster data model. Despite the substantial technological progress made since the initial development 

of GIS, many of the foundational design choices that were directly shaped by the technological 

limitations of that era, such as the significant challenges in handling 3D data, continue to be 

embedded within the modern GIS (Goodchild, 2018). For example, Tobler and Chen (1986) 

recognized that traditional analog maps had a dual function; they were a medium for visualizing 

spatial data and a medium for spatial data storage. In a digital, computerized environment, although 

these two functions can be separated, they are often treated jointly. They also emphasize that for 

spatial data storage, the concept of map projections that is essential when dealing with analog maps, 

is not necessary in GIS. Nevertheless, projecting spatial data from the Earth's surface (i.e., an ellipsoid) 

onto a plane is still a common practice applied when handling spatial data. This approach tolerates 

deformations that map projections introduce for the benefit of simpler calculations in the plane 

(Goodchild, 2019). 

Table 1.1 summarizes data formats and georeferencing approach (including pixel sizes) 

applied in the global land cover product that were analyzed in Section 1.1. It can be concluded that 

global raster land cover data are georeferenced in geographical 2D CRS, which uses ellipsoidal 

coordinates (ellipsoidal latitude and longitude) or a projected 2D CRS, which transforms ellipsoidal 

coordinates into a flat, two-dimensional grid of perpendicular affine coordinates. Despite their 

different approaches, both coordinate systems ultimately serve the same purpose: to represent the 

spherical/ellipsoidal surface of the earth in a planar, 2D form. 

When working with projected CRSs, a general challenge is that all map projections introduce 

distortions of area and/or shape as they flatten the Earth's curved surface. Nevertheless, GIS analysts 

prefer projected CRSs, as computations within a flat plane are typically simpler to execute than those 

on an ellipsoid. This benefit is especially evident in the case of land cover analysis when the data is 
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referenced in a projected CRS specifically designed to be area-preserving. Using such a system makes 

the calculation of areal statistics, which is often the main goal of land cover analysis, exceptionally 

simple (Thompson et al., 2022). The critical caveat, however, is that if the data is not initially given 

in an area-preserving CRS, it must be reprojected. This conversion requires a regridding of the raster, 

a step that inevitably compromises the original data quality and is almost guaranteed to result in either 

the loss or the replication of initial data (A. J. Kimerling, 2002; Lu et al., 2018). 

Table 1.1 CRSs used for georeferencing analyzed land cover products in Section 1.1 as well as raster pixel sizes and data 

formats used for data storage. 

Land cover 

product 

CRS for 

georeferencing 

Pixel size Data format 

ESA 

WorldCover 

Geographic 2D, WGS 

84 (EPSG:4326) 

0.3” × 0.3” (at the 

equator approx. 9.28 

× 9.21 m) 

DEFLATE-compressed 

GeoTIFF (unsigned 8-bit 

integers) 

Dynamic 

World 

Projected CRS based 

on WGS 84 ellipsoid 

and UTM projection 

10 × 10 m in 

projection plane 

LZW-compressed GeoTIFF 

(32-bits floating-point) 

Esri Land 

Cover 

Projected CRS based 

on WGS 84 ellipsoid 

and UTM projection 

10 × 10 m in 

projection plane 

LZW-compressed GeoTIFF 

(unsigned 8-bit integer) 

GLC_FCS30D Geographic 2D, WGS 

84 (EPSG:4326) 

0.97” × 0.97” (at the 

equator approx. 

30.00 × 29.80 m) 

LZW-compressed GeoTIFF 

(unsigned 8-bit integer) 

GLAD 

GLCLUC 

Geographic 2D, WGS 

84 (EPSG:4326) 

0.90” × 0.90” (at the 

equator approx. 

27.64 × 27.83 m) 

LZW-compressed GeoTIFF 

(unsigned 8-bit integer) 

While raster data in a geographic CRS does link data points to the ellipsoid, the underlying 

data model is still fundamentally a two-dimensional flat grid (Goodchild, 2019; M. Li and Stefanakis, 

2020). This grid is formed by dividing the Earth's surface (modeled as an ellipsoid) with meridians 
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and parallels at fixed angular intervals. This structure is resulting in pixels on the surface of ellipsoid 

that are not uniform; they vary in both area and shape, largely because the lines of longitude 

converging towards poles. This poses a problem when integrating data from satellite sensors, which 

are designed with sensor elements that capture a more-or-less constant square area on the ground. To 

fit these uniform measurements into the non-uniform cells of the raster, some level of data replication 

must occur. An established approach to address this issue is to create latitudinal zones that use 

different east-west pixel sizes (INSPIRE Temporary MIWP 2021-2024 sub-group 2.3.1, 2023). The 

greatest flaw of this approach is data handling issues at the zone boundaries and the need to use 

multiple raster files for representing area that crosses a zonal boundary. This undermines modern 

cloud-optimized concepts where all data are usually stored in one file. 

Another georeferencing approach that can be applied to land cover data and to geospatial 

data in general, is based on discrete global grid systems (DGGSs). Although it is not conceptually 

new, it remains largely unadopted by the GIS community. DGGS is a system of hierarchically 

organized discrete global grids (DGGs) that cover the entire sphere or ellipsoid that have grid elements 

(i.e. cells) that are highly regular. Cells are usually triangles, quadrangles or hexagons that are 

tessellating the earth’s surface. Each cell has a unique identifier, meaning that position on the earth's 

surface can be assigned not in a traditional form of coordinates, but in a form of cell identifier. In 

theory, dimensions of cell can be adapted to a particular application needs and can be defined so that 

it, for example, matches the accuracy of a positioning system. More on DGGSs is provided in Chapter 

2, thus here we only provide the most common method of constructing a DGGS. Construction starts 

from sphere- or ellipsoid-inscribed polyhedron, usually a regular one. Projecting edges of the 

polyhedron, for example, radially, to the sphere/ellipsoid generates initial spherical/ellipsoidal 

tessellation. Next, on each face of the polyhedron a hierarchical grid is defined and then projected to 

the sphere/ellipsoid (Alderson et al., 2020). This approach is for the cube (i.e., regular hexahedron) 

as a base polyhedron shown on Figure 1.6. Figure 1.7 shows a global grid with triangular, 

quadrangular, and hexagonal cells. 
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Figure 1.6 DGGS constructed by projecting grid from the faces of the cube to the sphere/ellipsoid. 

 
Figure 1.7 Global grids with (left to right): triangular, quadrangular, and hexagonal/pentagonal cells. 

The objective of this doctoral thesis is the development of DGGS as a geospatial data model 

for storage and handling of global land cover data. In terms of objective, research hypothesis are as 

follows: 

1. The discrete global grid system can be used to store and handle global land cover data while 

eliminating the shortcomings of the traditionally used two-dimensional raster geospatial data 

model. 

2. It is possible to develop a DGGS in which cells are quadrangles of constant area and whose 

shapes are more stable than that in the currently developed systems. 

1.3 Structure of the doctoral thesis 
In addition to this introductory chapter, this doctoral thesis is further divided into five main chapters. 

In Chapter 2 we give an overview of various methods that are applied for tessellating sphere/ellipsoid 

that are used as models for earth’s surface and define main concepts that are related to DGGSs. In 

Chapter 3, we explain the main deficiencies related to the current land cover data georeferencing 

approaches and propose enhancements in the currently available DGGS implementations that 
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should make them more suitable for land cover data. Namely, these enhancements are applied to the 

rHEALPix DGGS and they include increasing the accuracy of area-preserving mapping from sphere 

to ellipsoid and vice versa and increasing stability of shapes of rHEALPix DGGS cells. In this chapter, 

we explain methodology for such enhancements and provide results that enable assessment and 

comparison between current and enhanced DGGS versions. In Chapter 4, we discuss these results 

and confirm whether the suggested modifications did in fact make rHEALPix DGGS more suitable 

for land cover data storage and handling. At the end of this chapter we also perform comparison 

between modified rHEALPix DGGS version and traditional global gridding approaches.  In Chapter 

5, we apply rHEALPix DGGS and its modified version for performing land cover change calculations 

and make comparison with results obtained from the same land cover data but that are georeferenced 

in geographic and projected CRSs. Finally, in Chapter 6 we draw the main conclusions. 
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2 Overview of global grids 

Global land cover data are almost exclusively provided in a gridded/raster form. This is not a surprise 

since satellite images that are commonly used as the primary input for generating global land cover 

data are also provided in a raster form. Each raster element, i.e., pixel or cell, corresponds to the specific 

part of the earth surface to which land cover class is assigned. This grid, or raster, essentially tessellates 

the earth’s surface in order to discretize it into finite number of areal elements. Tesselation approaches 

can be different and adapted so that they have characteristics that are suitable for specific application. 

Kimerling et al. (1999) provide classification of various tessellation approaches and they divide them 

into two categories: those that tessellate sphere or ellipsoid directly and those that use map 

projections. Slightly modified classification by Kimerling et al. (1999) is provided by Gibb et al. 

(2021) and shown on Figure 2.1. These global grids are referred to as discrete global grids (DGG), 

and if a particular tessellation approach establishes a recursive partitioning resulting in a hierarchically 

organized grids that with finer tessellation in each subsequent hierarchical level, then it establishes a 

discrete global grid system (DGGS). It should be emphasized here that although DGGS is in broad 

sense any discrete tessellation with established grid hierarch, the term DGGS is usually reserved only 

for tessellations that use sphere- or ellipsoid-inscribed polyhedron for its definition (Section 2.2.1). 

 

Figure 2.1 Classification of global grids (adapted from (R. Gibb et al., 2021; J. A. Kimerling et al., 1999)) 
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2.1 Direct surface tessellation 
The most prominent tessellation approach is the latitude-longitude grid (Kelly and Šavrič, 2021) 

which is formed by a grid of meridians and parallels on the sphere or ellipsoid. This tessellation, 

according to Figure 2.1, falls under quadrilateral equal angle direct surface tessellation group and its 

projection to the plane with the equidistant cylindrical projection having an equator as a standard 

parallel (sometimes referred to as lat/long projection or Plate Carrée projection; Kerkovits, 2023, p. 

108) forms a rectangular grid in which cells are squares if angular spacing between meridians and 

parallels is the same (i.e., equiangular grid). Since raster data model is based on a rectangular grid and 

Plate Carrée projection of latitude-longitude grid is also rectangular, this is the main reason for 

popularity of this tessellation. The main disadvantage of equiangular latitude-longitude grid is the 

fact that cells do not have the same area (Mahdavi-Amiri et al., 2015b). The area is the largest for the 

cells near the equator and is the smallest for cells near the poles. To account for this issue to a certain 

degree, it is possible to define latitudinal zones with different angular spacing between meridians. This 

approach is adapted, for example, by the INSPIRE (Infrastructure for Spatial Information in Europe) 

Technical Guidelines on Geographic Grid Systems (INSPIRE Temporary MIWP 2021-2024 sub-

group 2.3.1, 2023) which refers to this grid as a zoned geographical grid. INSPIRE guidelines define 

five latitudinal zones in each hemisphere, as shown in Table 2.1. Cell (i.e., pixel) angular size across 

meridian is constant and angular size across parallel is for each zone obtained by multiplying spacing 

across meridian by factor in Table 2.1. This way, cell size shrinking in east-west direction by going 

polewards from the equator because of meridian convergence is mitigated by widening cell sizes in 

this direction.  This approach is taken from global digital elevation model (DEM) datasets, more 

specifically from the Digital Terrain Elevation Data (DTED; National Imagery and Mapping Agency, 

2000). Copernicus DEM (European Space Agency and Airbus, 2022), for example, is delivered as 

DTED and also as DGED (Defence Gridded Elevation Data; Defence Geospatial Information 

Working Group, 2020) format, which defines six latitudinal zones with different factors. 
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Table 2.1 Latitudinal zones and corresponding factors for determining angular spacing across parallel (INSPIRE Temporary 

MIWP 2021-2024 sub-group 2.3.1, 2023). 

Zone Latitude range Factor for spacing across parallel 

1 0°–50° 1 

2 50°–70° 2 

3 70°–75° 3 

4 75°–80° 4 

5 80°–90° 6 

A quadrilateral direct surface tessellation that is equal area (i.e., constant cell area) is proposed 

by Tobler and Chen (1986). This tessellation is also based on a grid formed by meridians and parallels. 

Angular cell size along parallels is constant, and along meridians it varies to account for meridian 

convergence. This means that angular sizes of cells in the north-south direction are being enlarged by 

going polewards from the equator in order to ensure that all cells have equal area. As Seong (2005) 

noticed, this approach produces cells that are narrow in east-west direction and long in north-south 

direction. Therefore, as he wanted to produce square-like tessellation that is also based on meridians 

and parallels, he proposed that metric distance along meridians is kept constant and distance along 

parallels changes so that all cells have the same area. He first provides a formula for calculating the 

latitudes of meridians and then a formula for calculating longitude difference within each zone 

between two consecutive parallels. One disadvantage of this approach is the fact that cell boundaries 

in north-south direction are not aligned, which for some applications might not be acceptable. 

Polyhedral direct surface tessellation begins with projecting edges of the polyhedron that is 

inscribed in the sphere to the sphere. Most often, one of the five Platonic polyhedrons (Figure 2.2) 

are used: tetrahedron (four triangular faces), cube/hexahedron (six square faces), octahedron (eight 

triangular faces), dodecahedron (twelve pentagonal faces), and icosahedron (twenty triangular faces). 

These are the only five regular polyhedra, meaning that their faces are all regular and mutually 

congruent polygons (Kerkovits, 2023, p. 253). This initial tessellation is then further refined by arcs 

of great or small circles of the sphere. 
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Figure 2.2 Platonic polyhedrons. 

One example that uses arcs of great circles is proposed by Szalay et al. (2007), which they refer 

to as Hierarchical Triangular Mesh (HTM). This surface discretization starts by connecting vertices 

of the octahedron that is inscribed into sphere with arcs of great circles. Each of the eight initial 

spherical triangles are recursively decomposed into four triangles by connecting midpoints of 

spherical triangle edges, again with the great circles arcs (Szalay et al., 2007). As Szalay et al. (2007) 

further explain, this tessellation does not produce cells of equal area; cells closer to the vertices of the 

octahedron are the smallest, while the larges are the ones near the center point of the initial spherical 

triangles. Tesselation by Dutton (2016) has a similar approach. He also started from the octahedron 

and eight initial spherical triangles that are in each hierarchical level refined to four triangles by 

connecting midpoints of edges of predecessing triangles, but with a difference that cell edges obtained 

by connecting midpoints are not arcs of great, but of small circles (some cell edges are arcs of parallels 

of latitude). Dutton (1989) refers to this tessellation as Octahedral Quaternary Triangular Mesh 

(O-QTM, or often just QTM), and it again does not produce a tessellation with cells of constant area. 

Tesselation that produces cells of equal area that have small circles as their boundaries and that have 

only slightly shape variations is developed by Song et al. (2002). This approach starts from an 

icosahedron to define initial tessellation of sphere into twenty equal area spherical triangles. Each 

initial triangle is then divided into four or nine triangles by dividing each triangle edge into two or 

three parts, respectively, and then connecting them by arcs of small circles. As Song et al. (2002) state, 

there are infinite number of small circle arcs that can be used to connect two points on the sphere 

and thus it is possible to define small circle in such a way that ensures that all subdivision triangles 

have the same area. Since this small circle subdivision method is based on spherical trigonometry, it is 

computationally complex, however, it is possible to optimize it by adapting it to vector algebra and 

thus make it more suitable for wider adaptation (Song et al., 2002). 
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Direct surface tessellation approach that is based on spheroidal Voronoi polygons, which is a 

component of a Hipparchus Geopositioning Model, is developed by Lukatela (1987). As Lukatela 

(1987) explains, this spheroidal surface partitioning is based on a set of points on the surface of the 

spheroid that become center points of the Voronoi polygons defined by all points that are closer to 

the specific center point than to any other point from the initial set of points. The distribution of the 

center points can be based on various criteria, such as density of spatial data, i.e., where data are more 

dense, center points can also be distributed more densely (Lukatela, 1987, 2002). Clearly, this 

tessellation is not intended to produce cells of equal area or of regular shapes and is also not aimed at 

defining hierarchical tessellation. However, it has many benefits for geopositioning in computerized 

environment over the commonly used ellipsoidal coordinates. 

2.2 Map-projection-based tessellation 
The map-projection-based tessellation can be divided into two categories: those that define 

tessellation in map projection plane and then map the tessellation back to the sphere or ellipsoid (i.e., 

single projection plane approach), and those that define tessellation on the faces of the polyhedron 

centered in the center of the sphere ellipsoid and then map that tessellation to the sphere or ellipsoid 

(i.e., multiple projection planes approach). Each of these approaches can be further divided into those 

that ensure that all tessellation cells have the same area and those that do not (J. A. Kimerling et al., 

1999). 

2.2.1 Single projection plane 

Single projection plane tessellation approach is arguably the most common and traditionally the most 

accepted one. First, the whole surface of the sphere or ellipsoid is mapped in plane, then tessellation 

is established in plane and then mapped back to the ellipsoid. The final tessellation properties would, 

of course, be directly linked to the properties of a used map projection. 

Plate Carrée projection is often used for this purpose because of already discussed reasons; 

equiangular grid of meridians and parallels is mapped to grid of squares, which is especially suitable 

from the perspective of data storage in a form of a raster geospatial data model. This surface 

partitioning is an example of a non-equal-area one. Another non-equal-area tessellation that is 
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especially popular by web-map providers is based on the so-called Web Mercator projection 

(EPSG:3857). This tessellation maps the whole globe except polar areas beyond latitudes of 

approximately ±85° to square in plane that is then recursively decomposed into, in general, four 

smaller equal-sized squares (Stefanakis, 2017). As Stefanakis (2017) explain, web-map providers 

generate (i.e., render) server-side vector and raster tiles based on this tessellation and then deliver them 

upon web-client requests. Each hierarchical level in this tessellation corresponds to a specific zoom 

level, meaning that in each subsequent level data are less generalized. 

From the equal area projections there are various options to choose from. For example, Seong 

et al. (2002) compared Mollweide, Hammer-Aitoff, Eckert IV and sinusoidal equivalent projection. 

The rectangular grid in any of these projection planes, when mapped back to the sphere or ellipsoid, 

defines a global tessellation. If cells in rectangular grid have the same area, then tessellation of sphere 

or ellipsoid would also be equal area. Although the cell area is constant, their shape on sphere or 

ellipsoid gets distorted. Seong et al. (2002) were actually interested in determining which of these four 

projections is the most suitable for archiving global image data and have identified sinusoidal 

(sometimes referred to as Sanson-Flamsteed or Mercator-Sanson projection; Kerkovits, 2023, p. 177) 

as such. Sinusoidal projection demonstrated the lowest level of data replication and omission when 

reprojecting a tessellation that is based on a locally-accurate projection (in this instance, the Universal 

Transverse Mercator, UTM). INSPIRE Data Specification of Geographical Grids (INSPIRE 

Temporary MIWP 2021-2024 sub-group 2.3.1, 2023) defines a tessellation that is based on Lambert 

Azimuthal Equal Area (LAEA) map projection. This tessellation, however, addresses only Europe 

region and is not suitable for global applications. EASE-Grid (Equal-Area Scalable Earth Grid) on the 

other hand also uses LAEA, but it separately projects the north and separately the south hemisphere 

(for polar areas) and additionally uses equal-area cylindrical projection (for areas closer to the equator) 

and thus addresses the whole globe (Brodzik et al., 2012).  

2.2.2 Multiple projection planes 

Planes in multiple projection planes approach are generally faces of one of the five Platonic polyhedra 

(J. A. Kimerling et al., 1999) shown on Figure 2.2, but there are also examples of using other 

polyhedra, such as truncated icosahedron (Tong et al., 2005), disdyakis triacontahedron (Catalan 

solid; Hall et al., 2020), rhombic triacontahedron (also Catalan solid; Huang et al., 2024) or 
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cuboctahedron (Archimedean solid; Gray, 1994). To map sphere to the faces of the inscribed 

polyhedron, the first choice might be using the gnomonic projection (Snyder, 1992), i.e., central 

azimuthal perspective projection, however, there are many other suggested approaches. Projections 

on the faces of the polyhedron can further be unfolded into plane with unavoidable interruptions. 

There is also an example of the so-called polyhedric projection in which ellipsoidal quadrangles 

bounded by two meridians and two parallels of maximum dimensions of 1° × 1° are separately 

mapped to the plane (Frančula, 2000, p. 135). These 1° × 1° planar trapezium can be folded into 

polyhedron that Kerkovits (2023, p. 185) describes as ‘disco ball’. Somewhat similar approach but 

that does not depend on latitude-longitude grid is developed by Wecker et al. (2024). They propose 

a high-resolution polyhedron (i.e., polyhedron with many faces) instead of usually employed Platonic 

or Archimedean solids. Since high-resolution polyhedron better resembles sphere, distortions when 

projecting from polyhedron faces to the corresponding spherical polygons and vice versa are 

significantly reduced in comparison to, for example, Platonic solids (Wecker et al., 2024). 

As already mentioned, the gnomonic projection is a straightforward solution for mapping a 

sphere to the faces of the inscribed polyhedron or vice versa. While it is computationally very efficient 

and it maps polyhedron edges to geodesics on sphere (straight line in projection plane, i.e., faces of 

polyhedron), it is not an equal area projection (Wecker et al., 2024), which is problematic for some 

applications. Gnomonic projection is, for example, used in hexagonal-cell, icosahedron-based H3 

DGGS by Uber (Uber, n.d.) and as a part of a double mapping (i.e., composition of gnomonic 

projection and transformation aimed at making cells more uniform) in quadrangle-cell, cube-based 

S2Geometry DGGS by Google (Google, n.d.). Arguably the most widely recognized projection of a 

sphere that is based on a polyhedron is the Fuller’s Dymaxion Map by Buckminister Fuller. It first 

used cuboctahedron (polyhedron with eight triangular and six square faces) and later regular 

icosahedron, actually their spherical counterparts (spherical polyhedra), to unfold the globe into the 

plane (Gray, 1994). As Gray (1994) state, this projection does not preserve areas, but when areal 

distortions are compared to other map projections that are also suitable for global visualizations, 

namely Robinson and van der Grintern projections, this distortions are much less observable (i.e., 

areal distortion variability is lower). 
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Regarding the equal area projections from sphere to the faces of the inscribed polyhedron 

and vice versa, one of the most prominent examples is the work of Snyder (1992) that can be applied 

to any Platonic polyhedron and truncated icosahedron. Snyder uses LAEA projection with 

projection center corresponding to the latitude and longitude of the center of the spherical polygon 

and introduces additional transformations that ensure there are no overlaps or gaps between spherical 

polygons when planar polyhedron faces are mapped to sphere. Continuing on the work of Snyder 

(1992), van Leeuwen and Strebe 2006) developed a methodology for defining various equal area 

projections from faces of the polyhedron with regular polygonal faces to the sphere and vice versa. 

They also provide implementation for two such projections; one that does not introduce cusps when 

projecting meridian, parallels and other lines (which Snyder’s projection does) and another that 

preserves lengths of polygon edges. As Harrison et al. (2011) state, inverse of the Snyder’s projection 

(from faces of the polyhedron to the sphere) includes iterative calculations since it is not possible to 

derive formulas in the closed form. Therefore, they optimized inverse projection to make it more 

computationally efficient by employing different techniques, such as polynomial approximations to 

reduce the number of iterations or to abandon iteration altogether. Based on the Snyder’s projection, 

Carr et al. (1997) developed the ISEA (icosahedral Snyder equal area) discrete global grid by 

projecting sphere to the faces of the icosahedron (20 triangles), then constructing regular hexagon 

within each triangle followed by projecting hexagons back to sphere. This procedure creates 20 

spherical hexagons and 12 spherical pentagons (centered at the vertices of icosahedron) on the sphere, 

which establish an initial tessellation of the sphere (Carr et al., 1997). As Carr et al. (1997) further 

explain, in each hierarchical level of recursive decomposition, at each hexagon’s center and each of its 

vertices, one hexagon with three times smaller area is centered to define planar tessellation in 

subsequent level. This planar tessellation can again be mapped to the sphere by the ISEA projection. 

Carr et al. (1997) also developed a way of assigning unique identifier to each spherical hexagon and 

12 pentagons in each hierarchical level. 

Roşca and Plonka (2011) applied a similar approach for the cube. They also use LAEA 

projection for mapping faces of the cube to the sphere, followed by the additional area preserving 

transformation that tackles overlaps which occur when each cube face is mapped to the sphere with 

the LAEA projection (more in Section 3.3.2). Chan and O’Neill (1975) also developed an equal area 



2 OVERVIEW OF GLOBAL GRIDS 

24 
 

mapping from the faces of the cube to the sphere, which they refer to as Quadrilateralized Spherical 

Cube (QSC). Both of these approaches define quadrangular partitioning of the sphere. 

UTM projection should also be mentioned here. It is essentially a series of transverse 

Mercator projections that are used to map 6° degrees wide longitudinal zones into the plane, 

consecutively from the antemeridian (i.e., meridian with latitude of -180°). Strictly speaking, 

ellipsoids or sphere is this way mapped into 60 different planes. However, there is no geometrical 

relationship between these planes and sphere or ellipsoid, such as in case when planes are faces of the 

inscribed polyhedron, and these 60 planes can be in fact treated as a single plane. In that sense, UTM-

based tessellation should be treated as single-projection-plane-base. 

2.3 Discrete global grid system (DGGS) 
As already stated, any grid that partitions earth’s surface (i.e., sphere or ellipsoid of revolution) into 

finite number of areal elements can be considered as discrete global grid (DGG), and a system of 

(hierarchically organized) DGGs defines a discrete global grid system (DGGS). In previous sections, 

an overview of various approaches that can be applied in generating DGGs and subsequently DGGS 

was reviewed. Since we are examining DGGS from the land cover data perspective, DGGS that has 

cells of constant area is a basic requirement since it makes areal statistics calculations simple. From all 

tessellation approaches listed on the Figure 2.1 and examined in previous sections, only those that are 

based on small circle, polyhedral, direct surface tessellation and those that are based on equal area 

projections on a single or multiple projection planes, enable generating DGGS with cells having equal 

areas in a single hierarchical level (the so-called equal area DGGSs). From these, the most promising 

and most often applied approach is the one that is based on the area map projection from the faces of 

the polyhedron to the sphere or ellipsoid (Sahr et al., 2003; Wecker et al., 2024). Mahdavi-Amiri et al. 

(2015b) defined five parameters that characterize DGGS that are based on polyhedron: the choice of 

polyhedron, subdivision or refinement method applied to the polyhedron faces, shapes of cells, 

mapping approach for transferring cells from faces of the polyhedron to the sphere or ellipsoid, and 

indexing method for assigning unique identifiers to each of these cells. In the following paragraphs 

we give a brief overview of each of these design choices. 
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As already discussed, the most often choice for the regular polyhedron that defines the initial 

tessellation is one of the five Platonic polyhedrons (Figure 2.2), although other polyhedrons can also 

be used. The reason behind choosing Platonic polyhedrons is the fact that there is no other way to 

construct tessellation of sphere into regular, congruent (i.e., equal in shape and size) polygons beside 

radially projecting edges of the sphere-inscribed Platonic polyhedrons to the sphere (Lukatela, 2002). 

Any further refinements produce inevitable distortions in shape and/or area of tessellation cells (J. A. 

Kimerling et al., 1999). If number of polyhedral faces is larger, the polyhedron better represents the 

sphere and lower level of distortions are introduced (Wecker et al., 2024). This is the reason why 

icosahedron is the most often used from the Platonic polyhedrons (Sahr et al., 2003) and other 

polyhedrons that have a larger number of faces. Wecker et al. (2024) go the farthest in this regard by 

developing an approach for constructing high resolution polyhedrons, theoretically with 

unconstrained number of faces. After polyhedron has been selected, additional step also includes 

orienting it in relation to the equator and prime meridian (Sahr et al., 2003). There are various ways 

of orienting polyhedron, which is usually application-related. If shape and/or cell area distortions are 

largest for cells near the vertices of Polyhedron, and if DGGS is intended for applications on land, 

then it might be beneficial of placing polyhedron vertices so that they are placed into the sea. In some 

cases, it might be suitable placing vertices so that they coincide with poles of the geographic grid 

which might simplify establishing a link between geographical coordinates and DGGS cells. 

Refinement method defines how initial tessellation is further subdivided into finer cells. 

Refinement is defined in the plane (on each face of the polyhedron or in its unfolded form) and then 

mapped back to the sphere or ellipsoid. As Mahdavi-Amiri et al. (2015b) explain, refinement 

approach can be described by aperture, congruency, and alignment. Aperture, or sometimes 

refinement ratio (R. Gibb et al., 2021), defines number of cells (i.e., children cells) that each cell in 

one hierarchical level (i.e., parent cell) is decomposed into in the subsequent hierarchical level. 

Aperture is in some instances (for example, by Sahr et al. (2003)) defined as ratio of area between 

parent and children cells. Hierarchical levels are also sometimes referred to as refinement levels, 

recursion levels or resolutions. Apertures of, for example, 4 or 9 are commonly denoted as 4-fold or 

9-fold, or similarly as 1-to-4 or 1-to-9, respectively. Lower aperture values are usually desired since 

they provide greater flexibility in selecting the most appropriate cell size for specific application and 



2 OVERVIEW OF GLOBAL GRIDS 

26 
 

also provide spatially finer transition between hierarchical levels (Amiri et al., 2015). If refinement is 

congruent, then spatial union of children cells is fully encompassed by their parent cell (Mahdavi-

Amiri et al., 2015a) and thus hierarchical relationships between children and parent cell can be easily 

established. Otherwise, hierarchical relationship might, for example, be established based on rules 

that are defined during the DGGS design phase. Alignment can be vertex- and center-aligned, based 

on the fact whether children cells inherit vertices (vertex-aligned) and/or center points (center-

aligned) from their parents (Mahdavi-Amiri et al., 2015a). Refinements of various apertures, 

congruency, and alignment properties are shown on Figure 2.3. 

 
Figure 2.3 Different refinements of a parent cell (tick boundary) with children cells (pink boundary): (a) congruent, center- 

and vertex-aligned 1-to-4 refinement of a triangular cell, (b) not-congruent, center-aligned aperture 3 refinement of a 

hexagonal cell, (c) congruent, vertex-aligned 1-to-4 refinement of square cell, and (d) congruent, vertex-aligned 1-to-9 

refinement of a square cell (adapted from Alderson et al. (2020)). 

Regarding the cell shapes, the most common ones are triangles, quadrangles, and hexagons. 

In hexagonal tessellation, often exactly 12 pentagons are introduced because it is not possible to 
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tesselate sphere or ellipsoid with hexagonal cells only (Saff and Kuijlaars, 1997). Characteristics of 

refinement (congruency and alignment) are directly related to the cell shape. For example, refinement 

in a DGGS with hexagonal cells can never be congruent (Alderson et al., 2020), while for triangular 

and quadrangular cells congruent refinement can be easily established for some apertures. On the 

other hand, hexagonal cells have the largest compactness and have uniform adjacency; each hexagon 

has six neighboring hexagons with which it shares one edge, while triangles and quadrangles have 

some neighbors with which they share one edge and some with which they share one vertex (Sahr et 

al., 2003). Because of these reasons, as Sahr et al. (2003) point out, single resolution hexagonal DGG 

is usually preferred over triangular and quadrangular, but if clear hierarchical relationship is required 

between grids of different refinement, then triangular and quadrangular ones are more suitable. 

Projections used to transfer hierarchical grid from the faces of the polyhedron to the sphere 

or ellipsoid have already been discussed in Section 2.2.2. The last characteristic that enables 

distinction between different DGGSs according to Mahdavi-Amiri et al. (2015a) is the indexing 

method, i.e., assigning a unique identifier/index/address to each cell. These unique identifiers can be 

viewed as a substitution for traditionally used coordinates, i.e., DGGS can in this sense be viewed as 

a distinct georeferencing model. In general, one of the four indexing methods are used: hierarchical 

indexing, space filling curve indexing, axes-based indexing, or encoded addresses schemas (Amiri et 

al., 2015; R. Gibb et al., 2021). In hierarchical indexing, as its name suggests, cell indices are directly 

related to their “position” in the established hierarchical structure. As Amiri et al. (2015) explain, 

identifier of a specific cell is formed by adding an integer to the identifier of its parent cell. Space-

filling curves are often used for digitally storing multidimensional data in a 1D structure. In this case, 

different space-filling curves (Hilbert and Morton space-filling curves are shown on Figure 2.4) can 

be used to go (i.e., traverse) through all cells at all hierarchical levels and assign unique identifier to 

each cell. These identifiers are generally integers that increase by one for each cell in a traversal order 

and are given in a numeral system with base that corresponds to the DGGS aperture or its square root 

(Amiri et al., 2015). In axis-based indexing, identifier of a cell is determined based on a coordinate 

system whose axes are aligned in a way that enables addressing each cell with an vector of integers, 

each representing equal steps needed along each axis (Alderson et al., 2020). This vector can be 2D 

for grid that is made of quadrangular cells, or 3D for grids made of hexagonal cells (L. Zhao et al., 
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2022). If indexing is not based on any of these approaches, then it can be classified as an indexing that 

is based on some schema for encoding addresses. An example of this type of indexing is used in the 

What3Words where each cell of about 3 × 3 m is uniquely addressed by three words separated by 

period (Arthur, 2023). 

 
Figure 2.4 The first three steps of Morton (upper row) and Hilber (lower row) space-filling curves (adapted from Amiri et 

al. (2015) and Moon et al. (2001)).  
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3 Development of an enhanced DGGS for land cover mapping 

From the analysis of several prominent global land cover datasets in Section 1.1, it is clear that images 

acquired by remote sensing optical multispectral and radar sensors onboard earth observation 

satellites are the primary data source for creating land cover maps. Once the data has been collected, 

one of the pre-processing steps before delivering it to users typically involves projecting the data into 

a plane using a map projection and storing it in a raster data format. Such raster files then become 

part of geographic information system (GIS), where they are processed, analyzed, and visualized. 

Although GIS development began in the 1960s and was in many ways conditioned with the 

computer capabilities of that time, it seems that some of the fundamental concepts are still 

omnipresent in moder-day GIS (Goodchild, 2019). As recognized by Goodchild (2019), basic 

concept of early GIS as a collection of flat two-dimensional raster and vector layers has basically 

remained unchanged. This concept has various drawbacks that are not related to land cover data only, 

but to georeferencing spatial data in general. Some of these drawbacks are examined in the following 

section. 

3.1 Deficiencies of current approaches in land cover data storage and handling 
We firstly start from the approach of acquiring data by sensors on earth observation satellites. Each 

sensor detector receives electromagnetic energy that is emitted or reflected from the particular part of 

the earth’s surface and then stores a value that is proportional to the received energy (Cracknell, 

1998).  This area of the Earth's surface is known as the ground projected instantaneous field of view 

(GIFOV; Markham et al., 2020) or the instantaneous geometric field of view (IGFOV; Joseph, 2020). 

These raw observations are stored in the form of rectangular matrix in what is often called, sensor 

geometry, as opposed to cartographic geometry after performing orthorectification (Gascon et al., 

2014). Kimerling et al. (1999) state that one of the fundamental issues related to global raw 

observations data storage is the issue of their conversion to the global regular grid. Almost without 

exception, satellite observations and therefore land cover products as well are typically delivered in 

the form of a flat raster geospatial data model. This is not because this model is the most suitable for 
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such purposes, but rather because it is a widely accepted model that was used in GIS from its 

beginnings. 

As already stated, global raster (land cover) data are usually stored in a geographic 2D or 

projected CRS. Raster data in geographic 2D CRS essentially tessellates sphere/ellipsoid in a way 

that, according to Chapter 2 and Figure 2.1 is classified as a quadrilateral equal angle direct surface 

tessellation. In projected CRS on the other hand, raster data define tessellation that can be classified 

as map-projection-based. Map-projection-based approaches that are currently widely used are based 

on a single map projection plane (unless UTM-based tessellation is considered as a multiple-

projection-planes-based).  Some of the issues related to these tessellation approaches have already been 

briefly established, however, here they will be given into more detail. 

When using projected CRS, raw observations are transferred from the curved surface of the 

earth to the plane by using a particular map projection. In this process, along with a well-known 

problem of deformations that map projections introduce, an additional issue is the reprojection—

changing the CRS in which raster data are georeferenced (Figure 3.1; reprojecting also occurs when 

transferring remotely sensed data from sensor to cartographic geometry). A change in the CRS 

requires the resampling of raster data, as the pixel grid must be realigned to the new coordinate axes. 

Although various reprojection and resampling methods are available, all introduce some form of data 

alteration (Lu et al., 2018). For instance, nearest neighbor resampling preserves the original pixel 

values but reprojecting itself inevitably introduces a spatial shifts. On the other hand, resampling 

methods such as bilinear and cubic convolution introduce data smoothing, which may be 

advantageous for certain applications, but they modify the initial pixel values (Dwyer et al., 2018). 

According to Steinwand et al. (1995), one of the main problems related to reprojection is determining 

the target pixel size. Another challenging aspect of reprojecting is the potential pixel loss or replication 

(Moreira de Sousa et al., 2019; White, 2006). Bauer-Marschallinger et al. (2014) even developed an 

indicator—grid oversampling factor (GOF) as a measure of pixel duplication that occurs when 

satellite images are projected onto a regular grid. The fact that issues related to the raster data 

reprojection are not negligible, can be distinguished from the research by Dwyer et al. (2018). Mainly 

to minimize the negative effects of raster data reprojection when producing Landsat ARD images, 

they started from the raw Landsat data, and not from the generally available Landsat data 
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georeferenced in the UTM-based CRS. Their aim was to generate images in the Albers equal area 

conic projection and by using raw Landsat data instead of data in UTM, they have avoided double 

reprojection. 

 
Figure 3.1 Reprojecting raster. When axes-aligned pixel edges are transformed from one projected CRS into another 

projected CRS, they are, in general, some arbitrary curves. However, pixel edges of a raster in another CRS are again axes-

aligned and thus resampling is required. 

Publicly available Sentinel-2 images are also delivered in the UTM-based CRSs. Although 

linear projection deformations in UTM-based CRSs are not significant for most applications and can 

thus be ignored, they virtually introduce 60 different CRSs, one for each 6° wide longitudinal zone. 

As a consequence, using Sentinel-2 and Landsat images for global-scale analysis might be challenging 

since not all data are provided in the same CRS. Data can be either analyzed on a zone-by-zone basis, 

or can be reprojected to some common CRS, in which case reprojection-related issues will again be 

introduced. Additionally, Sentinel-2 images that are acquired within the same datatake, but were 

georeferenced in the different UTM zones, will partly overlap. It might therefore be challenging to 

determine which pixel value in the overlapping region to choose during the reprojection. Roy et al. 
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(2016) developed a resampling approach for such overlapping parts of Sentinel-2 images and 

concluded that if all available data are used from the overlapping parts of Sentinel-2 images, 

reprojection results will be of higher quality. On the other hand, Bauer-Marschallinger and Falkner 

(2023) found out that because of the overlap between Sentinel-2 images, not only between images in 

adjacent UTM zones, but also between images within the same UTM zone, a total of about one 

petabyte of data is redundantly stored for L1C and L2A images in a single Sentinel-2 data storage 

instance every year. 

From the global land cover data perspective, equal area projections are usually the only 

preferred ones since they enable performing simple areal statistics calculations (Steinwand et al., 1995; 

Thompson et al., 2022). Steinwand et al. (1995) have identified four equal area projections that are 

suitable for data with global coverage: interrupted Goode Homolosine, interrupted Mollweide, 

Wagner IV and Wagner IV. Moreira de Sousa et al. (2019) also concentrated on equal area projections 

that are suitable for global analyses and are implemented in widely used PROJ (PROJ contributors, 

2025) and other free and open-source libraries. They have compared sinusoidal, Mollweide, 

Hammer, Eckert IV, and interrupted Goode Homolosine (IGH) projections and have identified the 

last one as the one that, on average, introduces the lowest angular and distance deformations. 

Although interrupted Goode Homolosine projection introduces the lowest deformations, it still 

introduces them, mainly because of the attempt to deal with global data in a flat surface, rather than 

on the sphere or ellipsoid directly. Additionally, IGH projection also introduces the problem of data 

replication (observed by Yang et al. (1996), as cited by Usery et al. (2002)). 

Even though raster data in geographic 2D CRS directly tessellate sphere or ellipsoid, they also 

introduce data replication, firstly in data acquired by remote sensing satellites, and then subsequently 

in land cover data. This is visible from example on Figure 3.2. Because of the convergence of 

meridians, in the equal angle quadrilateral tessellation, cell/pixel size in east-west direction decreases 

by going from the equator towards north or south pole. In the north-south direction, in case of 

sphere, cell size is constant, and in the case of ellipsoids that are used as a model for earth’s surface, 

cell sizes are slightly varying, but with a much lower magnitude than in east-west direction. An 

example on Figure 3.2 shows 30 × 30 m quadrangle that can be perceived as a GIFOV of a satellite 

sensor detector. For simplicity, it can be taken that 30 × 30 GIFOV has approximately constant size 
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and shape regardless of geographical location. If equiangular geographic grid (EGG) is defined so that 

cells have approximately the same size as GIFOV at the equator, by going polewards, one GIFOV can, 

depending on the latitude, be mapped to more than one cell. For the WGS 84 ellipsoid, as visible on 

Figure 3.2, at approximately 71° north or south latitude, 30 × 30 GIFOV corresponds to three 

equiangular quadrilateral cells. In this case, redundancy, or multiplicated storage of original pixels, 

occurs. Because of the recent trend of delivering land cover data in geographical 2D CRS (Table 1.1) 

it is very likely that all input data used for land cover classification are integrated in the common 

equiangular quadrilateral grid prior to classification. This again means that, for example, Landsat or 

Sentinel-2 data will be partly replicated when reprojecting from UTM-based CRS to grid in 

geographic 2D CRS. Possible solution was already mentioned—defining latitudinal zones with 

varying cell sizes in east-west direction (Table 2.1). However, this approach in essence produces the 

same issue as using UTM-based CRSs does. Regular raster data formats, such as GeoTIFF, cannot 

have different grid resolutions (i.e., pixel sizes) within the same file, which hinders data analysis, 

especially in era of cloud-optimized data formats that enable storing and managed all data from a 

single file, even on a global level. 

 
Figure 3.2 Relationship between 30 × 30 m quadrangle (e.g., GIFOV of satellite sensor detector) on the WGS 84 ellipsoid 

and 1” × 1” geographical grid. 

As a disadvantage of georeferencing spatial data in geographic 2D CRS instead of in projected 

CRS, often a more complex data analysis is mentioned, especially calculating areas and distances in 

geographic CRS. Regardless of this and data replication issue, we still more support geographic CRS 

when choosing between geographic and projected CRS for global land cover data georeferencing. 
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Especially because modern GIS applications are starting to natively support working with data in 

geographic CRSs (Frančula et al., 2021; more on this in Chapter 5). Chrisman (2017) advocates for 

abandoning map projections  for most (but not all) calculations on the ellipsoid and using them for 

visualization purposes, while also tuning them data representation needs rather than for performing 

calculations (e.g., using equal area projection for calculating areas). 

All the previously mentioned challenges stem from the effort to define tessellation in a flat 

surface (i.e., plane) and then transfer it to curved earth's surface (or more precisely, the ellipsoid or 

sphere that approximates it). The most obvious problem here is that flat surface is not homeomorphic 

(i.e., topologically equivalent) to the sphere/ellipsoid (Chrisman, 2017). Even the equiangular 

tessellation by meridians and parallels, that is classified as direct surface tessellation approach, is 

defined by mapping a 2D domain ([−180°, 180°] × [−90°, 90°]) to the sphere or ellipsoid (Guo et 

al., 2020). Therefore, tessellation approaches that are based on polyhedra (geodesic DGGS) that are 

homeomorphic to the sphere are a more efficient way of discretizing sphere or ellipsoid into finite 

number of highly regular cells. 

3.2 Choosing a DGGS for global land cover data 
From the global land cover data perspective, only equal area DGGSs come into account. Equal area 

DGGSs enable trivial calculations of land cover areal statistics—it is required to count number of 

DGGS cells with assigned specific land cover class and then multiply it with constant area of cells. 

Additionally, equal area DGGSs ensure that all cells have a uniform probability of contributing to 

analysis (White et al., 1992). 

Next requirement would be that DGGS defines hierarchical tessellation of ellipsoids of 

revolution and not only spheres. Although for some applications using sphere as a proxy for the 

surface of the earth is justified, in order to achieve a more accurate analysis based on gridded data, 

ellipsoid must be used (Kelly and Šavrič, 2021). Process of land cover data classification already 

includes various sources of uncertainty and thus introducing any additional element of variability, 

such as using sphere instead of ellipsoid, should be avoided. If DGGS is an equal area one and is 

defined for spheres only, it can be easily extended to ellipsoid of revolution by using the so called 

authalic latitude (more on this in Section 3.3.1). This way, equal area property of the DGGS will be 
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retained on ellipsoid as well. Therefore, for equal area DGGSs, this requirement is preferred, but not 

mandatory. 

An additional requirement on the choice of DGGS that we consider important from the land 

cover data perspective is that it has a quadrangular cell. As noted earlier, DGGS cells are most often 

triangles, quadrangles and hexagons. Hexagonal grids are often considered as superior to 

quadrangular and triangular for achieving a highly regular discretization of sphere or ellipsoid. 

Hexagons have the greatest compactness (Section 3.4.3), and hexagonal grids have uniform adjacency, 

clear nearest neighbors (in hexagonal grid each hexagon shares a joint edge with their neighbors, while 

in quadrangular and triangular grids, some neighboring cells share a joint edge while others a joint 

vertex) and more-less constant distances between centers of neighboring cells (Birch et al., 2007; Sahr 

et al., 2015). However, the greatest drawback of hexagonal (or triangular) cells as well as triangular 

ones, as recognized by Sahr et al. (2011), is that sensor detectors onboard remote sensing satellites, 

that are the most valuable data source for producing land cover data, do not have hexagonal (or 

triangular), but rather quadrangular shapes. Therefore, choosing DGGS with quadrangular cells 

would be the most sensible from this perspective. DGGS with quadrangular cells are most often based 

on a cube as a base polyhedron, however, there are also examples that are based on octahedron (Luo 

et al., 2023). Often, the necessity for development of software that will enable advanced handling of 

data referenced with the DGGS is underscored as one of the greatest downsides of DGGSs from the 

applicative standpoint. However, Béjar et al. (2023) showed that existing software for managing raster 

data can be directly applied to data in DGGS that has quadrangular cells. This is another reason why 

we decided to go with a DGGS with quadrangular cells for managing land cover data. 

To summarize, a DGGS that is equal area, supports tessellation of both spheres and ellipsoids 

and has quadrangular cells is, based on the above discussion, an optimal choice for land cover data 

storage and handling. From the currently available DGGS implementations that were examined by  

Kmoch et al. (2022) and that fulfill established requirements, rHEALPix (Rearranged Hierarchical 

Equal Area Isolatitude Pixelation) DGGS was identified as the one that has the most stable shapes of 

cells. It should be noted however, that all cells of the rHEALPix DGGS are not ellipsoidal 

quadrangles—some cells are triangles. Nevertheless, the number of triangular cells is relatively small 

and one of the enhancements that we examine is particularly dealing with this issue. In the following 
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sections an overview of the rHEALPix DGGS is given and then two enhancements are introduced. 

The first one deals with numerical stability of calculating authalic latitude, a crucial aspect of the 

rHEALPix DGGS that enables equal-area tessellation of ellipsoid (Section 3.3.1), and the second one 

is focused on increasing stability of shapes of DGGS cells by applying different approach for 

transferring grid from the faces of the cube to the sphere/ellipsoid (Section 3.3.2). This second 

modification results in a tessellation of ellipsoid that is composed of cells that all have quadrangular 

shape. Results of the quantitative evaluation of rHEALPix DGGS before and after these 

modifications are provided in Section 3.5, while their interpretation and implications are discussed 

in Chapter 4. 

3.3 Modifying the rHEALPix DGGS 
The rHEALPix DGGS is a DGGS that is based on the HEALPix (Hierarchical Equal Area 

Isolatitude Pixelation) DGGS introduced by Górski et al. (1998; 2005). HEALPix DGGS provides 

an equal-area discretization of sphere and was initially intended for analysis of astronomical data 

(Górski et al., 2005). An interesting characteristic of HEALPix DGGS is that the center points of 

adjacent cells (or pixels, according to the HEALPix terminology) in east-west direction lie on the same 

parallel of latitude and are equally spaced on each parallel, which reduces complexity of spherical 

harmonics calculations (Gorski et al., 1998). Based on work of Roukema and Lew (2004), Calabretta 

and Roukema (2007) further derive an HEALPix spherical map projection that is suitable for 

projecting a sphere to the plane in a way that will map all 12 resolution-0 HEALPix DGGS cells to 

squares. As explained by Calabretta and Roukema (2007), this projection is a combination of 

Lambert’s cylindrical equal-area map projection for spherical zone between latitudes 𝜙𝜙 =

± arcsin(2 3⁄ ) ≈ ± 41.8103° (the so-called equatorial region) and interrupted equal-area Collignon 

projection for areas outside of this spherical zone (the so-called north and south polar regions). Since 

HEALPix DGGS was originally developed for spheres only, Gibb et al. (2013) modified it so that it 

can be applied to ellipsoids of revolution as well (further explained in Section 3.3.1). They also defined 

the rearranged HEALPix (i.e., rHEALPix) map projection and developed an rHEALPix DGGS that 

is based on it. 
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The rHEALPix map projection projects sphere or ellipsoid of revolution into six squares of 

equal size. Each polar region is projected into one square, and equatorial region is projected into four 

squares, as shown on Figure 3.3. Squares that are projection of the north and south polar region are 

denoted as N and S, respectively, while squares that are obtained by slicing projection of the 

equatorial region by projection of meridians that have longitudes -90°, 0°, and 90° are denoted as O, 

P, Q, and R, from left to right (Figure 3.3). These squares, or more accurately, their corresponding 

cells on the sphere or ellipsoid (spherical or ellipsoidal areas) define the first hierarchical level (i.e., 

resolution-0) of the rHEALPix DGGS, while assigned letters N, O, P, Q, R, and S are their identifiers. 

The rHEALPix map projection has two required parameters; n and s that are integers between 0 and 

3 and that define position of the N and S squares (projection of the N and S cells). For the N square, 

if it is placed above O square then n = 0, if it is above P then n = 1, if it is above Q then n = 2, and if 

it is above R then n = 3. Value of the parameter s analogously defines the position of square S in 

 
Figure 3.3 Projection of unit sphere and the resolution 0 rHEALPix DGGS cells in the plane by the (0, 0)-rHEALPix map 

projection. 
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relation to the squares O, P, Q, and R. Therefore, rHEALPix map projection is usually denoted as 

(n, s)-rHEALPix, which means that Figure 3.3 shows the (0, 0)-rHEALPix projection of the unit 

sphere. From this definition of the initial tessellation of the sphere or ellipsoid it can be concluded 

that the rHEALPix DGGS is a cubic geodesic DGGS (Gibb, 2016) that can be applied to spheres and 

ellipsoids of revolution. 

Aperture or refinement of the rHEALPix DGGS is defined by the integer parameter 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

which determines the number of segments of the same length in which each planar cell edge is divided 

in order to construct the cells on a subsequent hierarchical level. This means that aperture is 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2  

for parameter 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, or refinement ratio can be expressed as 1-to-𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 . Initial planar squares at the 

first hierarchical level (i.e. resolution-0), that correspond to the initial tessellation of the sphere or 

ellipsoid into six cells of equal area, are thus divided into 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2  squares each in the following level. 

Figure 3.4 shows example for resolution 1 for 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3 and Figure 3.5 for 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3 (Appendix A.4 

additionally shows resolution 2). All these squares have the same area and are in subsequent 

hierarchical levels again recursively decomposed into 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2   squares. These planar square grids are 

mapped back to the sphere or ellipsoid with the inverse (n, s)-rHEALPix map projection which 

 
Figure 3.4 (0, 0)-rHEALPix map projection of the sphere/ellipsoid and resolution 1, Nside = 2 rHEALPix DGGS cells. 
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produces the rHEALPix DGGS on the sphere or ellipsoid (Figure 3.6; more visualizations are 

available in Appendices A.1 and A.2). Since (n, s)-rHEALPix map projection is an equal-area 

projection and since all squares have the same area in each hierarchical level, rHEALPix DGGS is an 

equal-area DGGS. Also, from the approach on how cells from one hierarchical level are decomposed 

into finer cells on the following level, it is clear that rHEALPix DGGS is congruent and for odd values 

of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 it is center-aligned while for even values of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 it is vertex-aligned. 

 
Figure 3.5 (3, 2)-rHEALPix map projection of the sphere/ellipsoid and resolution 1, Nside = 3 rHEALPix DGGS cells. The 

same cells visualized in Robinson projection are available in Appendix A.5. 

Each cell has a unique identifier that is assigned to it. As already stated, resolution-0 cells have 

identifiers N, O, P, Q, R, and S. When each resolution-0 cell is decomposed into 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2  cells, their 

identifiers are determined by adding an integer from 0 to 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 − 1  to the identifier of the 

corresponding resolution-0 cell from left to right and top to bottom in a z-order filling curve manner. 

Example of assigning identifiers to resolution-1 cells for 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3 is visible on Figure 3.5. This same 

procedure is followed on each hierarchical level, which means that each cell identifier is determined 
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Figure 3.6 Resolution-0 (left) and resolution 1 (right) rHEALPix DGGS cells on the ellipsoid for the Nside = 3. 

by adding one of the integers from 0 to 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 − 1 to the identifier of their parent cell. Gibb (2016) 

developed a mechanism of determining topological relationships between cells using only their 

identifiers. This means that it is not required to know cell coordinates on sphere or ellipsoid, but only 

their identifiers to be able to find out which cells are neighbors or does one cell contain another. 

Figure 3.7 shows rHEALPix DGGS grids for resolution 4 and 11 in 1-to-4 and 1-to-9 refinements 

respectively, along with cell identifiers (more figures are available in Appendix A.3). 

 
Figure 3.7 rHEALPix DGGS grids and cell identifiers: Japan (left), Split, Croatia (right). 

Number of cells at each hierarchical level (i.e., resolution) is calculated as 6𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2𝑟𝑟𝑟𝑟𝑟𝑟, where 𝑟𝑟𝑟𝑟𝑟𝑟 

is the resolution/hierarchical level that starts from 0 for the initial tessellation of a sphere or ellipsoid. 
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Tables 3.1 and 3.2 contain the number of cells across different resolutions of the rHEALPix DGGS 

for the 1-to-4 (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ) and 1-to-9 (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3 ) refinement, respectively. Tables also contain 

theoretical areas of cells as well as their square roots for the WGS 84 ellipsoid (EPSG, n.d.-a). Square 

Table 3.1 Number of cells, theoretical areas, and square roots of theoretical areas across rHEALPix DGGS resolutions in the 

1-to-4 refinement (Nside = 2) for the WGS 84 ellipsoid. 

Resolution Theoretical area (m2) Square root of theoretical 
area (m) 

Number of cells 

0 85 010 936 954 014.70 9 220 137.58 6 
1 21 252 734 238 503.60 4 610 068.79 24 
2 5 313 183 559 625.92 2 305 034.39 96 
3 1 328 295 889 906.48 1 152 517.20 384 
4 332 073 972 476.62 576 258.60 1 536 
5 83 018 493 119.16 288 129.30 6 144 
6 20 754 623 279.79 144 064.65 24 576 
7 5 188 655 819.95 72 032.32 98 304 
8 1 297 163 954.99 36 016.16 393 216 
9 324 290 988.75 18 008.08 1 572 864 

10 81 072 747.19 9 004.04 6 291 456 
11 20 268 186.80 4 502.02 2.52 × 107 
12 5 067 046.70 2 251.01 1.01 × 108 
13 1 266 761.67 1 125.51 4.03 × 107 
14 316 690.42 562.75 1.61 × 109 
15 79 172.60 281.38 6.44  × 109 
16 19 793.15 140.69 2.58 × 1010 
17 4 948.29 70.34 1.03 × 1011 
18 1 237.07 35.17 4.12 × 1011 
19 309.27 17.59 1.65 × 1012 
20 77.32 8.79 6.60 × 1012 
21 19.33 4.40 2.64 × 1013 
22 4.83 2.20 1.06 × 1014 
23 1.21 1.10 4.22 × 1014 
24 0.30 0.55 1.69 × 1015 
25 0.08 0.27 6.76 × 1015 
26 0.02 0.14 2.70 × 1016 
27 4.7 × 10-3 0.07 1.08 × 1017 
28 1.2 × 10-3 0.03 4.32 × 1017 
29 2.9 × 10-4 0.02 1.73 × 1018 
30 7.4 × 10-5 0.01 6.92 × 1018 
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Table 3.2 Number of cells, theoretical areas, and square roots of theoretical areas across rHEALPix DGGS resolutions in 

the 1-to-9 (Nside = 3) refinement for the WGS 84 ellipsoid. 

Resolution Theoretical area (m2) Square root of theoretical 
area (m) 

Number of cells 

0 85 010 936 954 014.70 9 220 137.58 6 
1 9 445 659 661 557.20 3 073 379.19 54 
2 1 049 517 740 173.02 1 024 459.73 486 
3 116 613 082 241.45 341 486.58 4 374 
4 12 957 009 137.94 113 828.86 39 366 
5 1 439 667 681.99 37 942.95 354 294 
6 159 963 075.78 12 647.65 3 188 646 
7 17 773 675.09 4 215.88 2.87 × 107 
8 1 974 852.79 1 405.29 2.58 × 108 
9 219 428.09 468.43 2.32 × 109 

10 24 380.90 156.14 2.09 × 1010 
11 2 708.99 52.05 1.88 × 1011 
12 301.00 17.35 1.69 × 1012 
13 33.44 5.78 1.53 × 1013 
14 3.72 1.93 1.37 × 1014 
15 0.41 0.64 1.24 × 1015 
16 0.05 0.21 1.11 × 1016 
17 5.1 × 10-3 0.07 1.00 × 1017 
18 5.7 × 10-4 0.02 9.01 × 1017 
19 6.3 × 10-5 0.01 8.11 × 1018 

roots of areas serve as an approximate measure of sizes of cells, provided they are considered to be 

squares. In both tables, values are given up to a resolution for which cell size can be approximated as 

1 × 1 cm. The same values, except number of cells, are for more parameter 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 values provided in 

Appendix B. 

Although in plane all rHEALPix DGGS cells are squares, Gibb et al. (2013) classify their 

equivalents on the sphere or ellipsoid in four different categories, based on their shapes: quad cells in 

equatorial region, and cap, dart, and skew quad cells in the north and south polar regions (visible on 

Figure 3.6). Quad cells have four edges; two are arcs of parallels, and two are arcs of meridians. Cap 

cells are bounded by one parallel, and they are centered at the north or south pole. If 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is even, 

then there are no cap cells besides N and S resolution-0 cells. Dart cells have three edges, one of them 
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is arc of a parallel and the other two are directed towards the corresponding pole, while all other cells 

in the polar region are skew quad cells whose southern and northern edges are arcs of a parallel. 

3.3.1 Enhancing authalic latitude calculation 

Although spherical calculations are less complex than those on an ellipsoid of revolution 

(Dimitrijević et al., 2023), when high accuracy is required, substituting a sphere for an ellipsoid is 

usually not acceptable. Nevertheless, certain problems involving ellipsoids of revolution can be 

addressed by first transforming the ellipsoid to a sphere, followed by calculations on the spherical 

model. This transformation typically involves retaining the longitude while computing an auxiliary 

latitude on the sphere that is derived from the geodetic latitude on the ellipsoid. Various forms of 

auxiliary latitudes exist, each with distinct properties that are suitable for specific application (Karney, 

2024). Among them, the authalic latitude is particularly interesting for equal area DGGSs, as it 

enables mapping from an ellipsoid to a sphere while preserving areas. Of course, when performing 

area-preserving mapping from sphere to ellipsoid, they both must have the same area. Sphere that has 

the same area as ellipsoid is referred to as its authalic sphere, and radius of such sphere as authalic 

radius. 

From the available DGGS implementations, rHEALPix DGGS is one of the few that, in 

addition to spheres, has a built-in support for ellipsoids of revolution. DGGS implementations such 

as Uber’s hexagonal H3 (Uber, n.d.) or Google’s quadrangular S2 Geometry (Google, n.d.) DGGSs 

area currently available for spherical surfaces only. As already stated, rHEALPix extends the 

HEALPix DGGS so that it can define DGGS on ellipsoids of revolution. If DGGS has to be defined 

on an ellipsoid of revolution, rHEALPix DGGSs is first defined on its authalic sphere and then grids 

are mapped to the ellipsoid by calculating geodetic latitudes from the corresponding authalic 

latitudes. Since all cells on a particular refinement level of the rHEALPix DGGS have the same area 

on the sphere and since mapping from sphere to ellipsoid is area-preserving, equal-area property of 

rHEALPix DGGS is also retained on ellipsoid. This means that the (n, s)-rHEALPix map projection 

that enables constructing rHEALPix DGGS on ellipsoid, defines a double mapping, first from plane 

(i.e., faces of the cube) to sphere and then from sphere to ellipsoid. 
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Currently, rHEALPix DGGS Python package (Raichev et al., 2023) uses equations that are 

provided by Synder (1987). Equation for obtaining authalic latitude 𝜙𝜙𝐴𝐴 from the geodetic latitude 𝜙𝜙 

is:  

𝜙𝜙𝐴𝐴 = arcsin
�1 − 𝑒𝑒2��

sin 𝜙𝜙
1−𝑒𝑒2 sin2 𝜙𝜙 − 1

2𝑒𝑒 ln 1−𝑒𝑒 sin 𝜙𝜙
1+𝑒𝑒 sin 𝜙𝜙�

1 − 1−𝑒𝑒2

2𝑒𝑒 ln 1−𝑒𝑒
1+𝑒𝑒

, (1) 

where 𝑒𝑒 is eccentricity calculated as 𝑒𝑒 = √(𝑎𝑎2 − 𝑏𝑏2) 𝑎𝑎2⁄  from semi-major axis 𝑎𝑎 and semi-minor axis 

𝑏𝑏 of the ellipsoid of revolution. For calculating geodetic latitude 𝜙𝜙 from authalic latitude 𝜙𝜙𝐴𝐴, Snyder 

(1987) defines power series expansion in terms of eccentricity 𝑒𝑒, up to 𝑒𝑒6: 
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� sin 6𝜙𝜙𝐴𝐴. 

(2) 

Arguably the most widely used number representation in modern computers, IEEE 

(Institute of Electrical and Electronics Engineers) double-precession (64-bit) floating-point, enables 

storing numbers with approximately 16 significant decimal digits (Overton, 2001, p. 24). This in 

general means that all calculations on double-precision floating-point numbers will generate a 

hardware-related round off-error (Press et al., 1992, p. 30). This round-off error is then being 

accumulated with each additional operation and if not taken care of, can, in some circumstances, 

drastically degrade calculation accuracy. Accuracy of results obtained by Equations 1 and 2 are 

therefore both affected by round-off errors. While Equation 1 is provided in closed-form, Equation 

2 gives an approximate solution that is based on truncated power series expansion. This means that 

results obtained by Equation 2, in addition to round-off errors, which is hardware-related, also suffer 

from the truncation error, which can be treated as implementation-related. Although rHEALPix 

DGGS on ellipsoid is analytically equal area DGGS, because of round-off and truncation errors, it 

will never be numerically equal-area. However, it is possible to reduce these errors in calculating 

authalic latitude from geodetic and vice versa. Making these calculations more accurate will bring 
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(n, s)-rHEALPix map projection closer to being numerically area-preserving and then subsequently 

rHEALPix DGGS closer to being numerically equal area DGGS. 

Karney (2024) provides equations for calculating authalic latitude from geodetic and vice 

versa in a form of power-series expansion in terms of third flattening n. Third flattening is calculated 

as 𝑛𝑛 = (𝑎𝑎 −  𝑏𝑏) (𝑎𝑎 +  𝑏𝑏)⁄ . He provides power-series expansions up to 𝑛𝑛6 and confirms that these 

equations enable fully accurate double-precision calculations for flattenings |𝑓𝑓 | ≤ 1/150 (flattening 

of the WGS 84 ellipsoid (EPSG, n.d.-a) is 1/298.257223563). Karney (2024) additionally suggests 

optimizing calculations of power-series expansions by applying Horner method and Clenshaw 

summation (Brenner et al., 1955). These optimizations are aimed at further reducing round-off errors 

and reducing the execution time. After applying Horner method, equation for calculating authalic 

latitude 𝜙𝜙𝐴𝐴 from geodetic latitude 𝜙𝜙 is given by: 
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(3) 

and for the inverse direction, calculating geodetic latitude 𝜙𝜙 from authalic latitude 𝜙𝜙𝐴𝐴: 

𝜙𝜙 ≈ 𝜙𝜙𝐴𝐴 + 𝑛𝑛 �
4
3

+ 𝑛𝑛 �
4
45

+ 𝑛𝑛 �− 16
35

+ 𝑛𝑛 �− 2582
14175

+ 𝑛𝑛 �
60136

467775
+ 𝑛𝑛 28112932

212837625 � � � � � sin 2𝜙𝜙𝐴𝐴 

+ 𝑛𝑛 �𝑛𝑛 �
46
45

+ 𝑛𝑛 �
152
945

+ 𝑛𝑛 �− 11966
14175

+ 𝑛𝑛 �− 21016
51975

+ 𝑛𝑛 251310128
638512875 � � � � � sin 4𝜙𝜙𝐴𝐴 

+ 𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �
3044
2835

+ 𝑛𝑛 �
3802
14175

+ 𝑛𝑛 �− 94388
66825

− 𝑛𝑛 8797648
10945935 � � � � � sin 6𝜙𝜙𝐴𝐴 

+ 𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �
6059
4725

+ 𝑛𝑛 �
41072
93555

− 𝑛𝑛 1472637812
638512875 � � � � � sin 8𝜙𝜙𝐴𝐴 

+ 𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �
768272
467775

+ 𝑛𝑛 455935736
638512875 � � � � � sin 10𝜙𝜙𝐴𝐴 

+ 𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �𝑛𝑛 �𝑛𝑛 4210684958
1915538625 � � � � � sin 12𝜙𝜙𝐴𝐴. 

(4) 

We also tried applying Clenshaw summation, but experimental assessment of our 

implementation showed that execution time was slightly prolonged with almost no significant 
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increase in calculation accuracy. Therefore, in the final implementation of Equations 3 and 4 we did 

not use Clenshaw summation. 

In the current rHEALPix DGGS Python package, we replaced statements that were based on 

Equations 1 and 2 (hereafter, old statements) with statements based on Equations 3 and 4 (hereafter, 

new statements). Afterward, we assessed old and new statements from the perspective of calculation 

accuracy and processing time. To assess calculation accuracy, we employed the mpmath Python 

package (The mpmath development team, 2023) that enables floating-point calculations with 

arbitrary precision. This arbitrary precision was set to be much higher than the 64-bit double-

precision so that results obtained by mpmath package can be used as a reliable baseline for 

comparisons. Regarding accuracy of conversion from geodetic to authalic latitude, we first performed 

regular double-precision floating-point calculations based on Equations 1 and 3. Then we again 

performed calculations based on Equation 1 but with mpmath package. Differences between authalic 

latitude obtained by the mpmath package and each of the two double-precision floating-point-based 

calculated authalic latitudes is considered as a calculation error. We carried out these calculations 

across all latitudes from -90° to 90° with a resolution of 0.1°. 

For the inverse direction, we applied a similar approach. For the input authalic latitude we 

used all authalic latitudes obtained by the mpmath in the previous step. This authalic latitude is at a 

double-precision level without calculation errors and for each of these latitudes we know what the 

expected error-free resulting geodetic latitudes are—those that were used as inputs for assessment in 

the opposite conversion direction (values form -90° to 90° with resolution of 0.1°). We had to apply 

this approach since there is no available closed-form equation for converting authalic to geodetic 

latitude. Therefore, for assessing calculation accuracy of Python statements that are based on 

Equations 2 and 4 we did not need to perform any calculations with mpmath package, but only 

regular double-precision floating-point calculations. Calculation errors were in this case calculated by 

subtracting obtained geodetic latitudes from geodetic latitudes that were used as an input for 

assessing calculation accuracy in geodetic to authalic conversion direction. 

To examine the impact of calculation errors in converting geodetic to authalic latitude and 

vice versa on the rHEALPix DGGS cell areas, we calculated areas of cells on the WGS 84 ellipsoid by 

following procedure from Section 3.4.1. We did not perform comprehensive analysis for all cells on 
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all resolutions but have limited evaluation to nine cells per resolution in 1-to-4 (Nside = 2) and nine 

cells per resolution in 1-to-9 (Nside = 3) refinements. Comprehensive analysis would be 

computationally too demanding and impractical for our goal—getting an indicative insight into 

magnitude of cell area variability as a result of errors in conversions between authalic and geodetic 

latitudes. Unique identifiers of these nine cells from the highest examined rHEALPix DGGS 

resolution are listed in Table 3.3. These cell identifiers are defined in line with the (0, 0)-rHEALPix 

map projection. The highest resolution for 1-to-4 refinement is defined as resolution 30 and for 1-to-

9 refinement as resolution 19 (the same as in Tables 3.1 and 3.2). In each following lower resolution, 

parents of these cells were used for area variability assessment. From these nine cells on each 

resolution, three of them are quad, three skew quad, and three dart cells that are located on different 

latitudes. This way we ensured that analysis is being performed on representative sample of cells. 

Table 3.3 Unique identifiers of the highest resolution cells used for assessing variability in cell areas because of the 

calculation errors in conversions between authalic and geodetic latitudes. For each following lower resolution, parents of 

these cells were used for area calculations. 

IDs of analyzed cells in 1-to-4 refinement IDs of analyzed cells in 1-to-9 refinement 

Q122222222222222222222222222222 Q1111111111111111111 

Q102222222222222222222222222222 Q1777777777777777777 

Q100000000000000000000000000000 Q4444444444444444444 

N111111111111111111111111111111 N2222222222222222222 

N121111111111111111111111111111 N2444444444444444444 

N112222222222222222222222222222 N4266666666666666666 

N011111111111111111111111111111 N7777777777777777777 

N013333333333333333333333333333 N7111111111111111111 

N030000000000000000000000000000 N4711111111111111111 

For assessing processing time, we used the timeit and time Python modules for measuring 

time that is needed for executing a particular statement. In order to ensure that obtained timings are 

representative, we performed calculations multiple times (in some cases more than 100 000 times) 

and then we used minimum observed values for comparison. This approach helps minimize the 

influence of background processes on time measurements and thus makes results more 

representative. We did not compare only new and old statements in both conversion directions, but 
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also two different versions of old statements. First was the unaltered version that uses functions from 

the NumPy Python package (Harris et al., 2020). In the second version, all NumPy functions were 

replaced by functions from the math module without any other modifications. NumPy functions are 

optimized for working on arrays while statements for converting authalic to geodetic latitude take a 

single numerical value as input. Therefore, it is expected that math functions will be more time 

efficient since they natively perform calculations on single values (Sundnes, 2020, p. 85). This means 

that processing time assessment was conducted for three groups of statements—unaltered old 

statements, old statements in which NumPy functions were replaced with corresponding math 

functions, and new statements. For each group of statements, processing times were measured in 

both conversion directions. In order to examine whether input latitude has any influence on the 

processing time, we measured all these processing times across all altitudes with resolution of 1°. 

Additionally, we measured a total processing time that is required for converting all latitudes from 

-90° to 90°, with varying steps between them: 1°, 10’, 1’, 10”, 1”, 0.1”, and 0.01”. These different steps 

mean that statements were executed different number of times, from 181 for step of 1° to 64 800 001 

for step of 0.01”. 

Here we also provide the main characteristics of the workstation that was used for all these 

calculations as it might be particularly relevant from the processing time perspective—Windows 

workstation with an Intel® Xenon® Silver 4216 CPU and 64 GB of DDR4 RAM. Also, as a proxy 

for the surface of the Earth, WGS 84 ellipsoid (EPSG, n.d.-a) was used in all calculations. Results 

obtained by all these assessments are provided in Section 3.5.1 and corresponding discussion in 

Section 4.1. 

3.3.2 Modifying shapes of the rHEALPix DGGS cells 

One of the disadvantages of the rHEALPix DGGS is the fact that different projections are 

used for equatorial and for polar regions. For equatorial region, Lamber cylindrical equal area map 

projection was used, and for polar regions Collignon projection (R. Gibb et al., 2013). This means 

that even on the first hierarchical level shapes of the cells on sphere/centroid are not the same. Roşca 

and Plonka (2011) developed a different approach. Unit sphere centered in the origin of the 3D 

Cartesian coordinate system is first divided into six equal parts (i.e., spherical quadrangles of equal 

area) by diagonal planes 𝑦𝑦 = ±𝑥𝑥, 𝑧𝑧 = ±𝑦𝑦, and 𝑧𝑧 = ±𝑥𝑥 (Figure 3.8). Each of these quadrangles is 
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separately projected in plane with Lambert azimuthal equal-area (LAEA) map projection where 

intersection between a particular coordinate axis and quadrangle being projected is taken as a 

projection center (Figure 3.9). The projection of each of these spherical quadrangles are, as Roşca and 

Plonka (2011) put it, ‘curved squares’ that have the same area as spherical quadrangles. These curved 

squares are then mapped to a rectangular square also by applying area-preserving mapping (we refer 

to this mapping as Roşca-Plonka projection). This double mapping (from spherical quadrangles to 

curved square in plane and finally to rectangular square in plane) can be geometrically interpreted as 

mapping spherical quadrangles to the corresponding faces of the cube that is centered in the origin 

of the 3D Cartesian coordinate system (Figure 3.8). The area of each face of the cube is the same as 

the area of spherical quadrangles, which means that the length of the edge 𝑎𝑎 of the cube is √2𝜋𝜋 3⁄ . 

This cube is oriented in a way that its diagonal planes correspond to the diagonal planes used to obtain 

spherical quadrangles (Figure 3.8). 

 
Figure 3.8 Intersecting unit sphere with diagonal planes of the axis-aligned cube to obtain spherical quadrangles. 

 
Figure 3.9 LAEA projection of spherical quadrangle (curved square) and rectangular square of the same area. 
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The inverse of this projection can geometrically be interpreted as area-preserving mapping 

from faces of the cube to the sphere. Each face of the cube is mapped to the corresponding spherical 

quadrangle. This means that if we decompose each face of the cube with a rectangular grid in which 

grid elements are square cells of equal area, we can map it back to the sphere in an area-preserving 

manner, while ensuring that the whole sphere is covered with this grid. This procedure essentially 

produces DGG on the sphere. If we further define a system of hierarchically organized grids that are 

recursively partitioning (J. A. Kimerling et al., 1999) each face of the cube, then we get geometrical 

component of the DGGS on the sphere. To consider these hierarchically organized grids as a DGGS, 

additionally at least a mechanism for assigning unique identifiers to each grid element (i.e., cell) is 

needed. Since rHEALPix DGGS cells in the plane are also squares and since it already has a 

mechanism for assigning unique identifiers to each cell and other various functions for generating 

DGGS and performing some spatial analysis with cells and grids, we decided to modify rHEALPix 

DGGS by modifying a way of how square grid is mapped from the plane to the sphere. The main aim 

of this modification is to make shapes of the cells on sphere or ellipsoid more stable. We refer to this 

modified DGGS as QPix DGGS and below we explain steps that were taken to implement it. 

We first consider a unit sphere which can later easily be generalized to any sphere of arbitrary 

radius, or any spheroid (i.e., ellipsoid of revolution, oblate or prolate). For the rHEALPix DGGS, 

hierarchical grids, unique identifier assigning mechanism, and many other functions are defined in 

plane, and then, if needed, transferred to the sphere or ellipsoid. Therefore we also start from plane 

in order to make use of as much as possible of the current rHEALPix DGGS implementation written 

in Python. Figure 3.3 shows projection of the spheroid to the plane using (0, 0)-rHEALPix 

projection. Projection of the north polar region is considered as resolution-0 cell N, while projection 

of the south polar region is considered as resolution-0 cell S. Projection of the equatorial region is 

divided in four resolution-0 cells: O, P, Q, and R. All resolution-0 cells are squares of equal size and 

in each subsequent resolution (i.e., hierarchical level of the DGGS) they are being uniformly 

partitioned in square grid and mapped back to the sphere. Using analogous notation, we define (n, s)-

QPix projection by arranging Roşca-Plonka projections of each previously defined spherical 

quadrangle so that they are organized in the same way as (n, s)-rHEALPix projection of resolution-0 

cells of the rHEALPix DGGS. 
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In more practical terms, the procedure is the following. Cube is rotated by 45° around z-axis 

in negative direction (Figure 3.10) for reasons discussed later. Each spherical quadrangle constructed 

by intersecting diagonals of the cube with sphere is separately projected in plane by LAEA map 

projection where corresponding quadrangle centroid is taken as projection center. Spherical 

quadrangle projection is curved square (Figure 3.9). 

 
Figure 3.10 Rotating the cube by 45° around z-axis. 

Point (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐) related to the curved square is mapped to a point (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠)  related to the square 

(Figure 3.11) using equations derived by Roşca and Plonka (2011): 
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(5) 

where 𝛽𝛽 = √𝜋𝜋 6⁄ . We refer to this projection as Roşca-Plonka projection. 
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Figure 3.11 Mapping curved square to square (Roşca-Plonka projection). 

Each square is then translated within the 𝑥𝑥𝑥𝑥 coordinate system in order to ensure that the 

whole sphere is projected within the single coordinate system: 

- square that is a projection of spherical quadrangle that has a centroid on the equator with 

latitude of -135° is translated by  −3√𝜋𝜋 6⁄  along x-axis and is denoted as square O, 

- square that is a projection of spherical quadrangle that has a centroid on the equator with 

latitude of -45° is translated by  −√𝜋𝜋 6⁄  along x-axis and is denoted as square P, 

- square that is a projection of spherical quadrangle that has a centroid on the equator with 

latitude of 45° is translated by  √𝜋𝜋 6⁄  along x-axis and is denoted as square Q, 

- square that is a projection of spherical quadrangle that has a centroid on the equator with 

latitude of 135° is translated by  3√𝜋𝜋 6⁄  along x-axis and is denoted as square R, 

- square that is a projection of spherical quadrangle that has a centroid that matches the north 

pole is translated by  2√𝜋𝜋 6⁄  along y-axis and by (2𝑛𝑛 − 3)√𝜋𝜋 6⁄  (𝑛𝑛 ∈ {1, 2, 3, 4}) along 

x-axis is denoted as square N, and 

- square that is a projection of spherical quadrangle that has a centroid that matches the south 

pole is translated by −2√𝜋𝜋 6⁄  along y-axis and by (2𝑠𝑠 − 3)√𝜋𝜋 6⁄  (𝑠𝑠 ∈ {1, 2, 3, 4}) along 

x-axis is denoted as square S. 
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The above procedure defines the (𝑛𝑛, 𝑠𝑠)-QPix map projection of a unit sphere to the plane 

(Figure 3.12). Value 𝑛𝑛 defines above which of the squares that contain projection of equator (O, P, 

Q, and R) the N square will be placed. If 𝑛𝑛 = 0, N is placed above square O, if 𝑛𝑛 = 1, N is placed 

above square P, if 𝑛𝑛 = 2, N is placed above square Q, and if 𝑛𝑛 = 3, N is placed above square R. Value 

𝑠𝑠 analogously defines below which of these squares the S square will be placed. These squares denoted 

as N, O, P, Q, R, and S are considered as planar projections of resolution-0 QPix DGGS cells. Within 

each of these squares, a hierarchical square grid can be defined and mapped back to the sphere. 

In order to make the most of the rHEALPix DGGS implementation in Python, we had to 

replace the hard-coded extents of the (𝑛𝑛, 𝑠𝑠)-rHEALPix projection of the sphere with the extents of 

the (𝑛𝑛, 𝑠𝑠)-QPix (extents of the (0, 0)-rHEALPix map projection of the unit sphere are marked on 

Figure 3.3, and extents of the (0, 0)-QPix projection on Figure 3.12). After this step, the same Python 

functions that are used to generate planar version of the rHEALPix DGGS can be used to generate 

 
Figure 3.12 Projection of the unit sphere and the resolution 0 QPix DGGS cells in the plane by the (0, 0)-QPix map 

projection. 
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the planar version of the QPix DGGS (resolution 1 cells for 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 shown on Figure 3.13 and for 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3 on Figure 3.14; resolution 2 cells are shown in Appendix A.4). Regarding the initial 

rotation of the cube around z-axis by -45°, this step was performed so that the projection of prime 

meridian by the (𝑛𝑛, 𝑠𝑠)-QPix projection coincides with the y-axis in the planar coordinate system, 

which is also the case with the (𝑛𝑛, 𝑠𝑠)-rHEALPix projection. This step is not necessary, but it was 

performed so that arrangement of the resolution-0 cells in relation to the spherical/geodetic 

coordinates is for the QPix DGGS kept in resemblance with the rHEALPix DGGS. 

 
Figure 3.13 (0, 0)-QPix map projection of the sphere/ellipsoid and resolution 1, Nside = 2 QPix DGGS cells. 

To map a square grid from each of the six squares back to the sphere, the inverse of the 

mapping from the curved square to square has to be applied for each square and then curved squares 

have to be mapped to the sphere by the inverse LAEA projection. Rosca and Plonka (2011) give 

equations for  mapping a point (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠)  that is related to the square to a point (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐) that is related 

to the curved square (Figure 3.11, but in opposite direction): 
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(6) 

where again 𝛽𝛽 = √𝜋𝜋 6⁄ . We refer to this projection as inverse Roşca-Plonka projection. 

 
Figure 3.14 (0, 3)-QPix map projection of the sphere/ellipsoid and resolution 1, Nside = 2 QPix DGGS cells. The same cells 

visualized in Robinson projection are available in Appendix A.5. 

The mapping described above is related to the unit sphere, however, it can be easily extended 

to spheres of arbitrary radius or to arbitrary spheroids. Extension to the spheres is straightforward. If 
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𝑅𝑅𝐴𝐴 is the radius of the sphere and if the point on this sphere has a spherical coordinates (𝜆𝜆, 𝜙𝜙), then 

its (𝑛𝑛, 𝑠𝑠)-QPix projection is point with coordinates (𝑅𝑅𝐴𝐴𝑥𝑥𝑠𝑠, 𝑅𝑅𝐴𝐴𝑦𝑦𝑠𝑠). Here 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑠𝑠 are coordinates 

obtained by mapping a point (𝜆𝜆, 𝜙𝜙) to the plane by the (𝑛𝑛, 𝑠𝑠)-QPix projection defined for the unit 

sphere. In essence, this means that coordinates (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠) obtained by (𝑛𝑛, 𝑠𝑠)-QPix projection defined on 

a unit sphere need to be scaled by 𝑅𝑅𝐴𝐴. For the inverse direction, point coordinates (𝑅𝑅𝐴𝐴𝑥𝑥𝑠𝑠, 𝑅𝑅𝐴𝐴𝑦𝑦𝑠𝑠) in 

a map projection plane first need to be ‘scaled down’ by 𝑅𝑅𝐴𝐴 to (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠) and then by applying inverse 

of the (𝑛𝑛, 𝑠𝑠)-QPix map projection for unit sphere mapped to the spherical coordinates (𝜆𝜆, 𝜙𝜙). These 

spherical coordinates are the same for the unit sphere as they are for sphere with arbitrary radius 𝑅𝑅𝐴𝐴. 

Extension to ellipsoids is also simple and is the same for QPix DGGS as it is for rHEALPix 

DGGS—spheroid can be mapped to a sphere by retaining longitude and calculating an auxiliary 

latitude on sphere (Karney, 2024). Since area preservation is crucial, as an auxiliary latitude we chose 

an authalic latitude. Point on an ellipsoid is first mapped to the sphere with radius 𝑅𝑅𝐴𝐴 by calculating 

authalic latitude from its geodetic latitude and then it is mapped from sphere to the plane as described 

before. Here 𝑅𝑅𝐴𝐴 is the radius of the authalic sphere of the ellipsoid, i.e., radius of the sphere that has 

the same area as ellipsoid. If point is being mapped by the (𝑛𝑛, 𝑠𝑠)-QPix projection from the map 

projection plane to the ellipsoid, then after it is being mapped on the sphere, it is mapped to the 

ellipsoid by calculating geodetic from authalic latitude. The (𝑛𝑛, 𝑠𝑠)-QPix map projection of ellipsoid 

to the plane can thus be considered as triple mapping: (1) mapping ellipsoid to sphere, (2) mapping 

each of the six spherical quadrangles to the plane by LAEA projection, and (3) mapping each curved 

square obtained by LAEA projection to square by the Roşca-Plonka projection followed by 

translating all squares so that they do not overlap within the same coordinate system. QPix DGGS 

cells that are mapped from the plane to the spheroid by the (𝑛𝑛, 𝑠𝑠)-QPix projection are visualized on 

Figure 3.15 (more visualizations are available in Appendices A.1 and A.2). Figure 3.16 shows QPix 

DGGS grids for resolution 4 and 11 in 1-to-4 and 1-to-9 refinements respectively, along with cell 

identifiers (more figures are available in Appendix A.3). 

Regarding the area of QPix DGGS cells on the sphere or ellipsoid, they are the same as for 

the rHEALPix DGGS, which means that values in Tables 3.1 and 3.2 are applicable to the QPix 

DGGS. 
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= 3. sideix DGGS cells on the ellipsoid for the NQP) right(1 -resolution and 0 (left)-Resolution 15.3Figure  

We compared QPix DGGS and rHEALPix DGGS from the perspective of stability of cell 

shapes. In the following section, Section 3.4, we first explain how areas and perimeters of cells were 

calculated, which are needed for calculating compactnesses of cells. Results for rHEALPix and QPix 

DGGS are provided in Section 3.5.2, and related discussion in Section 4.2. Discussion in Section 4.2 

is not limited to compactness assessment only, but also includes an overall comparison between grids 

in rHEALPix and QPix DGGSs. 

 
Figure 3.16 QPix DGGS grids and cell identifiers: Japan (left), Split, Croatia (right). 
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3.4 Evaluating geometric properties of rHEALPix and QPix DGGSs 
DGGS should hierarchically tesselate the earth’s surface (i.e., sphere or ellipsoid) in a highly regular 

way (Alderson et al., 2020, p. 26). Full regularity, i.e., tessellation with polygons that are congruent 

and regular, is not achievable on a curved surface (R. Gibb et al., 2021), however, some DGGSs 

exhibit higher, and others lower degree of regularity. Regularity in this sense can be observed as a level 

of distortion of areas and shapes of a DGGS cells (J. A. Kimerling et al., 1999). Kimerling et al. (1999) 

suggest that geometric structure of a DGGSs should be compared by calculating surface area and 

compactness of DGGS cell, as well as other metrics, across multiple refinement levels (i.e. resolutions). 

Compactness (defined in Section 3.4.3) is used as a measure of DGGS cell shape distortion. The 

higher the stability of area and compactness across cells on a specific refinement level, the higher the 

tessellation regularity. In order to compare compactness stability across different DGGS refinement 

levels (i.e., resolutions), White et al. (1998) calculated ranges (i.e., difference between maximum and 

minimum value), standard deviations, and means of compactness values of all cells on a single level. 

We also followed their approach and have calculated these values for up to resolution 8 in 1-to-4 

refinement and resolution 5 in 1-to-9 refinement for rHEALPix and QPix DGGSs. Results of these 

calculations are available in Section 3.5.2 and associated discussion in Section 4.2. 

Since rHEALPix and QPix DGGS are analytically equal-area DGGSs, calculating cell areas 

might be interesting only to determine numerical stability of calculations involved in generating 

DGGS cells on a sphere or ellipsoid (Section 3.3.1) and much less as a means of determining 

geometrical properties of a DGGS. Nevertheless, since we wanted to keep our calculations free from 

theoretical assumptions as much as possible, we still performed cell area calculations from the 

generated cell geometries on the spheroid. For calculating compactness of a cell, along with area, its 

perimeter is also required. Therefore, in the following sections, we describe a methodology applied 

for calculating area, perimeter, and compactness of cells across refinement levels for rHEALPix and 

QPix DGGS cells. 

3.4.1 Calculating area of DGGS cells 

DGGS cells are polygons on a sphere or spheroid. To determine their area, different approaches can 

be applied. Since analogous calculations on spheres are generally simpler than on spheroids, one 
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approach would be to first map spheroid to the sphere by using authalic latitude and then perform 

areal calculations on sphere. We dismiss this approach since, among other things, our aim is to 

determine how increase of accuracy of calculating authalic latitude is affecting cell areas. Therefore, 

we need to rely on a method to determine cell areas that does not depend on authalic latitude. 

If DGGS cells are quadrangles bounded by two meridians and two parallels, calculating their 

area directly on the surface of the spheroid is straightforward (Kelly and Šavrič, 2021; Lapaine and 

Lapaine, 1991). If cells are bounded by geodesic lines, then equations for calculating their area 

directly from geodetic coordinates of their vertices are also provided by various authors (Karney, 

2023; Lukatela, 2000; Nowak and Nowak Da Costa, 2022). Although for some DGGSs, at least some 

of the cells are bounded by meridians and parallels or geodesic lines, this is not the case for the QPix 

DGGS. In these situations, Chrisman (2017) suggests projecting polygon (i.e., DGGS cell) from 

spheroid to a plane by an equal-area projection and then calculating area from a planar coordinates. 

Based on a definition of a DGGS cell boundary and based on a choice of a projection, projections of 

a DGGS cell boundaries can be straight lines. In general case, however, these projections will be curves 

map projection plane that diverge from a straight line. Therefore, besides vertices of a DGGS cells 

(three for triangles, four for quadrangles, etc.), Chrisman (2017) emphasizes the need to densify edges 

of a DGGS cell with sufficient number of intermediate points before projecting them to the plane. 

Of course, densification reduces calculation error, but certain level of error stemming from 

approximation of a curved line with straight segments remains. Gillissen (1993) suggests a procedure 

for eliminating this approximation error. 

Since QPix DGGS cell edges are not geodesic lines or meridians or parallels, we decided to 

calculate cell areas by first projecting cells to a plane by equal-area map projection and then 

performing calculations in plane. Cells in the rHEALPix DGGS and in QPix DGGS are highly 

regular and their extent is approximately the same in all directions from the corresponding center 

point, therefore we decided to use LAEA projection, as suggested by Kelly and Šavrič (2021). Each 

cell was separately projected with the LAEA projection with cell centroid as projection center. The 

LAEA was also used by Kmoch et al. (2022) when calculating areas of DGGS cells as a part of 

determining area and shape distortions for various available DGGS implementations. Results 

obtained by Berk and Ferlan (2018) when comparing effect of using different projections on cadastral 
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parcel areas give preference to Albers equal-area conic (AEAC) projection over LAEA. We performed 

preliminary testing with LAEA and AEAC and we obtained better results with the LAEA projection, 

presumably because Berk and Ferlan (2018) analysis was limited to Slovenia, while our analysis is 

global. 

The number of densification points along edges of DGGS cells was determined empirically. 

Kmoch et al. (2022) did not explicitly state how they performed densification, but from the 

supplementary material they have published (Kmoch and Uuemaa, 2024), it seems each edge was 

densified with 10 points. White et al. (1998) found that for their analysis, 216-resolution points along the 

edge was sufficient to reach needed accuracy (resolution is hierarchical level). We performed analysis 

for the resolution-1 rHEALPix DGGS cells on WGS 84 ellipsoid for a 1-to-4 and 1-to-9 refinements. 

We calculated differences between theoretical area and calculated areas for each cell for different 

number of densification points along each edge, starting from 216 and doubling it until 220 for 1-to-4 

Table 3.4 Absolute differences between theoretical and calculated areas for different number of densification points along 

each edge of the rHEALPix DGGS resolution-1 cells in 1-to-4 refinement (WGS 84 ellipsoid). 

Number of 
densification points 

Min. difference 
(m2) 

Max. difference 
(m2) 

Max. difference / 
theoretical area* (ppt) 

216  183.90 616.00 28.98 
217 44.90 156.50 7.36 
218 9.90 41.50 1.95 
219 1.30 11.00 0.52 
220 0.00 4.90 0.23 

* Theoretical area = 21 252 734 238 503.60 m2 

Table 3.5 Absolute differences between theoretical and calculated areas for different number of densification points along 

each edge of the rHEALPix DGGS resolution-1 cells in 1-to-9 refinement (WGS 84 ellipsoid). 

Number of 
densification points 

Min. difference 
(m2) 

Max. difference 
(m2) 

Max. difference / 
theoretical area* (ppt) 

39  175.68 10 027.13 1 061.56 
310 19.37 1 114.18 117.96 
311 1.65 123.76 13.10 
312 0.68 13.49 1.43 
313 0.09 2.44 0.26 

* Theoretical area = 9 445 659 661 557.20 m2 
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refinement and from 39 and tripling it until 313 for 1-to-9 refinement. Maximum and minimum 

observed differences between theoretical and calculated areas are shown in Table 3.5 and Table 3.8. 

In tables above, maximum differences are observed for cap cells in case of 1-to-9 refinement 

and for dart cells in case of 1-to-4 refinement. To a certain level, this is an expected finding since 

approximation of a curved cell edges with straight segments would yield higher areal error for cells 

with higher edge curvature. Northmost/southmost dart cells and cap cells have the highest edge 

curvature on the spheroid and this characteristic is obviously being kept after projection to the plane 

with LAEA. Since differences between calculated and theoretical area for cap and 

northmost/southmost dart cells are outliers and since there are the least cap and dart cells from four 

possible cell shapes, they cannot be considered as a good representation for all cells. Therefore, we 

decided to concentrate on quad cells in the equatorial region because there are twice as many cells 

with quad shape than all other cells’ shapes combined. 

Based on a logic that in order to achieve a comparable cell area calculation accuracy across 

DGGS resolutions, distance between densification points should be stable across resolutions, and on 

results from Table 3.5 and Table 3.8, and also on work by White et al. (1998), we propose an equation 

for calculating number of densification points for 1-to-4 refinement:  

max�2, 217−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� ; (7) 

and for 1-to-9 refinement:  

max�3, 311−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� . (8) 

These equations make sense only if curvature and length of cell edges in LAEA projection are similar. 

Since cell edges of cells in equatorial region are meridians and parallels, near the equator they have 

similar curvature and length. By going polewards, curvature of north and south cell edges is becoming 

larger, and their length is getting smaller. According to Equations 7 and 8, the number of 

densification points is kept the same for a particular resolution. This means that in this case increased 

curvature will, to a certain level, be compensated with smaller distances between densification points. 

Exponents in Equations 7 and 8 for resolution 0 were chosen based on results from Table 3.5 and 

Table 3.8 so that cell areas are calculated with at least 10 significant figures. We confirmed empirically 

that for quad cells near the equator and near the border between equatorial and polar regions, if 
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densification points are determined from Equations 7 and 8, cell areas will be calculated with at least 

10 significant figures. The same empirical analysis was performed for the QPix DGGS, and it was 

concluded that number of densification points along cell edges determined by Equations 7 and 8 

would for most cells achieve comparable cell area calculation accuracy than is achieved by the 

rHEALPix DGGS. 

3.4.2 Calculating perimeter of DGGS cells 

For calculating a perimeter of a DGGS cell on a spheroid, based on review by Chrisman (2017), two 

approaches are feasible. The first approach again includes projecting the cell edges to the plane. Edges 

again need to be densified before projecting with a sufficient number of intermediate points. 

Projections of cell edges, which are in general curves, will thus be approximated with straight 

segments. Length of a cell edge is then calculated by adjusting length of each segment by a local map 

projection scale factor and then summing all adjusted lengths. To make calculations of scale factor as 

simple as possible, Snyder (1987, p. 21) states that a choice should be made between cylindrical, conic, 

or azimuthal projections with normal aspect (as defined by Lapaine and Frančula (2019)). 

 The second approach deals with the problem of perimeter calculation directly on the surface 

of a spheroid. If edges of DGGS cells are meridians, parallels, or geodesics, then equations for 

calculating their length are well known. Otherwise, each cell edge should be densified with 

intermediate points and then the length of cell edge can be approximated with a sum of lengths 

between each neighboring densification points. Since geodesic line is the line with the shortest length 

between two points on a spheroid, it makes the most sense to use it as an approximation of a cell edge 

between two densification points. We decided to go with this approach. Based on discussion and 

findings in Section 3.4, we performed a similar analysis and empirically came to the equations for 

required number of densification points along each edge of the rHEALPix DGGS quad cells that will 

ensure that perimeter is calculated with at least 10 significant digits across all resolutions. For 1-to-4 

refinement, the number of densification points should be: 

max�2, 216−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� ; (9) 

and for 1-to-9 refinement:  

max�3, 310−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� . (10) 
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For calculating length of a geodesic, we used the Python implementation of a C++ library 

GeographicLib (Karney et al., 2022) which implements findings from Karney (2013). Again, the same 

empirical analysis was performed for the QPix DGGS, and it was concluded that number of 

densification points along cell edges determined by Equations 9 and 10 would for most cells achieve 

comparable cell perimeter calculation accuracy than is achieved for the rHEALPix DGGS. 

3.4.3 Calculating compactness of DGGS cells 

The rHEALPix and QPix DGGS cells are squares in the (𝑛𝑛, 𝑠𝑠)-rHEALPix or (𝑛𝑛, 𝑠𝑠)-QPix map 

projection plane and when they are projected to the spheroid by inverse of these projections, their 

area is, at least analytically, preserved, but their shape is being distorted. As a measure for shape 

distortion, often and angular distortion is used, however, for determining DGGS cell shape 

distortion, compactness is more common (J. A. Kimerling et al., 1999; Kmoch, Vasilyev, et al., 2022; 

White et al., 1998). Compact shapes are considered as those that have maximum accessibility to all 

parts of the shape and thus circle is considered as the most compact planar shape (W. Li et al., 2013). 

The Iso-Perimetric Quotient (IPQ) is the most often used measurement for compactness of a planar 

shapes and is calculated as (defined by Osserman (1978) as cited by Li et al. (2013)): 

𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 = 4𝜋𝜋𝜋𝜋
𝑃𝑃 2 , (11) 

where 𝐴𝐴 is the area of shape, and 𝑃𝑃  is its perimeter. For circle, 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 is equal to 1, and as shape is more 

diverging for a circular shape, 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 is decreasing towards 0. 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 was used by Kmoch et al. (2022) 

to compare various DGGS implementations from the cell shape stability point of view. Since 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 

is used for planar shapes, they applied Equation 11 on a projection of each DGGS cell to the plane by 

the LAEA map projection. We decided not to follow this direction since LAEA deforms shapes as 

well as length of the cell perimeter which can thus have a negative impact on compactness calculation 

accuracy. Instead, we decided to calculate compactness that is more suitable for shapes on the 

spheroid. Basaraner and Cetinkaya (2019) define spherical compactness as: 

𝐶𝐶𝑠𝑠𝑠𝑠 = �4𝜋𝜋 − 𝐴𝐴
𝑟𝑟2�

𝐴𝐴
𝑃𝑃 2 , (12) 

where 𝐴𝐴 is the area of shape, 𝑃𝑃  is its perimeter and 𝑟𝑟 is the radius of the sphere. By using Equation 

12, a spherical cap will have compactness equal to 1, meaning that it is considered as the most compact 
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shape on the sphere. Adapting this equation to the arbitrary spheroid would be complex. To a certain 

degree, the simplest solution would be to define a polar cap as the most compact shape. However, if 

the most compact shape is the one that has a property of maximum accessibility, because curvature 

of a spheroid is not constant, the most compact shape varies with the location on a spheroid. One 

way to approach this problem is to determine the centroid of the shape for which compactness is 

being calculated and then define a buffer zone around that centroid by geodesic lines of constant 

length as the most compact shape for that location. Since we are performing calculations on a WGS 

84 ellipsoid of revolution, to avoid this complexity we decided to use area and perimeter of a DGGS 

cell that were calculated on the spheroid and radius of the authalic sphere of the ellipsoid to calculate 

compactness using Equation 12. We decided to use the radius of the authalic sphere because 

coefficient before 𝐴𝐴 𝑃𝑃 2⁄  in Equation 12 is determined in a way to ensure that the area of a shape being 

considered on a sphere is the same as the area of the spherical cap (i.e., the most compact shape). 

Although this is not a perfect solution, it is still better than using Equation 11 for calculating 

compactness of a shape on a spheroid. 

3.5 Results 
In this section, we first provide results of the accuracy and processing time assessment that are related 

to modifying Python statements used for converting geodetic to authalic latitude and vice versa 

(explained in Section 3.3.1). Then, we present results of compactness calculations for the rHEALPix 

and QPix DGGSs (explained in Section 3.4). 

3.5.1 Authalic latitude calculation for the rHEALPix DGGS  

All calculation errors, i.e., differences between baseline latitudes and latitudes that were calculated 

using old and new code, are in this section reported as their absolute values. Box plots on Figures 3.17 

and 3.18 show distribution of these calculation errors using old and new Python statements for 

converting geodetic to authalic and authalic to geodetic latitude, respectively. We have to note that 

on these box plots we did not show outliers but have extended whiskers to minimum and maximum 

observed errors. Also, because we wanted to clearly show distribution of errors produced by the old 

and new statements and because magnitudes of these errors significantly differ, we used two axes on 

each graph and colored them the same way as the corresponding box plots. 
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Figure 3.17 Box plots of the observed calculation errors related to calculating authalic latitude from the geodetic. 

 

 
Figure 3.18 Box plots of the observed calculation errors related to calculating geodetic latitude from the authalic. 

Figure 3.19 shows maps with spatial distribution of calculation errors generated by old and 

new statements in geodetic to authalic latitude calculation direction. Figure 3.20 show identical 

distribution across latitudes in the form of a graph. For the authalic to geodetic latitude conversion, 

these distributions are shown on Figures 3.21 and 3.22. On graphs on Figures 3.20 and 3.22, again 

two axes with different scales were used. To clearly show variability in calculation errors, colors in the 

color bar for maps on Figures 3.19 and 3.21 were arranged so that approximately the same number 

of parallels is shown with the same or similar color. These are the parallels for which calculation errors 

were determined (all parallels with latitudes from -90° to 90° and with a difference of 0.1° between 

them). 



3 DEVELOPMENT OF AN ENHANCED DGGS FOR LAND COVER MAPPING 

66 
 

 
Figure 3.19. Spatial distribution of the observed calculation errors related to calculating authalic latitude from the geodetic. 

 
Figure 3.20. Distribution of observed calculation errors across latitudes when calculating authalic latitude from the geodetic. 
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Figure 3.21. Spatial distribution of the observed calculation errors related to calculating geodetic latitude from the authalic. 

 
Figure 3.22. Distribution of observed calculation errors across latitudes when calculating geodetic latitude from the authalic. 
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Regarding the influence of the calculation errors when performing conversions between 

authalic and geodetic latitudes in both ways, Tables 3.6 and 3.7 list the maximum recorded differences 

between theoretical and calculated rHEALPix DGGS cell areas on the WGS 84 ellipsoid, across the 

resolutions in the 1-to-4 and 1-to-9 refinements, respectively. Maximum differences for each 

resolution were determined from all differences that were calculated on cells starting from those listed 

in Table 3.3 and then continuing on their parents on each subsequent lower resolution. 

Table 3.6 Maximum recorded differences between theoretical and calculated area of the ellipsoidal rHEALPix DGGS cells 

across resolutions in the 1-to-4 refinement. 

Resolution 
(i.e., 
refinement 
level) 

Theoretical area (m2) Old Python statements New Python statements 
Max. cell area 
difference from 
theoretical area (m2) 

Share of area 
difference in 
total area (ppb) 

Max. cell area 
difference from 
theoretical area (m2) 

Share of area 
difference in total 
area (ppb) 

0 85 010 936 954 014.70 9 871.80 0.12 17.94 

< 0.01 

1 21 252 734 238 503.60 2 465.17 0.12 4.59 
2 5 313 183 559 625.92 3 698.64 0.70 3.36 
3 1 328 295 889 906.48 1 325.45 1.00 1.20 
4 332 073 972 476.62 360.99 1.09 0.24 
5 83 018 493 119.16 92.17 1.11 0.05 
6 20 754 623 279.79 23.17 1.12 0.01 
7 5 188 655 819.95 5.80 1.12 

< 0.01 

8 1 297 163 954.99 1.45 1.12 
9 324 290 988.75 0.36 1.12 
10 81 072 747.19 0.09 1.12 
11 20 268 186.80 0.02 1.12 
12 5 067 046.70 0.01 1.12 
13 1 266 761.67 

< 0.01 

1.12 0.01 
14 316 690.42 1.12 0.01 
15 79 172.60 1.12 0.00 
16 19 793.15 1.09 0.05 
17 4 948.29 1.18 0.05 
18 1 237.07 1.09 0.07 
19 309.27 1.03 0.48 
20 77.32 1.05 0.26 
21 19.33 1.49 0.13 
22 4.83 2.85 0.89 
23 1.21 5.93 3.89 
24 0.30 22.40 16.03 
25 0.08 28.05 10.13 
26 0.02 83.40 12.33 
27 0.0047 76.24 33.19 
28 0.0012 153.11 88.01 
29 0.0003 295.17 94.10 
30 0.0001 597.80 208.88 

 



3 DEVELOPMENT OF AN ENHANCED DGGS FOR LAND COVER MAPPING 

69 
 

Table 3.7 Maximum recorded differences between theoretical and calculated area of the ellipsoidal rHEALPix DGGS cells 

across resolutions in the 1-to-9 refinement. 

Resolution 
(i.e., 
refinement 
level) 

Theoretical area (m2) Old Python statements New Python statements 
Max. cell area 
difference from 
theoretical area (m2) 

Share of area 
difference in 
total area (ppb) 

Max. cell area 
difference from 
theoretical area (m2) 

Share of area 
difference in total 
area (ppb) 

0 85 010 936 954 014.70 9 871.80 0.12 17.94 

< 0.01 

1 9 445 659 661 557.20 8 609.40 0.91 5.09 
2 1 049 517 740 173.02 1 147.71 1.09 1.32 
3 116 613 082 241.45 130.07 1.12 0.12 
4 12 957 009 137.94 14.48 1.12 0.01 
5 1 439 667 681.99 1.61 1.12 

< 0.01 

6 159 963 075.78 0.18 1.12 
7 17 773 675.09 0.02 1.12 
8 1 974 852.79 

< 0.01 

1.12 0.02 
9 219 428.09 1.12 0.01 
10 24 380.90 1.12 0.03 
11 2 708.99 1.13 0.36 
12 301.00 1.10 0.29 
13 33.44 2.74 2.45 
14 3.72 9.29 0.19 
15 0.41 71.42 21.31 
16 0.05 52.74 52.78 
17 0.01 588.80 527.72 
18 0.0006 1 195.57 186.06 
19 0.0001 168.94 1 041.95 

Finally, we provide results that are related to processing time assessment. Processing time 

across latitudes, for both conversion directions and for old (based on NumPy and based on math) 

and new Python statements are shown on Figure 3.23. As already explained, processing time was 

measured for each latitude from -90° to 90° with steps of 1°, in order to determine whether input 

latitude value has any influence on processing time. 

 
Figure 3.23. Processing times across latitudes. 
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Total processing times for different number of executions (i.e., number of input latitudes) of 

all statement variants are listed in Table 3.8. From this data, we generated graph on Figure 3.24 which 

shows the relationship between different statement variants in terms of processing time and thus 

enables their direct comparison. 

Table 3.8. Total processing times for old statements (both, NumPy- and math-based) and new statements for different 

number of executions. The number of executions is, in fact, the number of input latitudes on which statements were 

executed. These latitudes include the whole range from -90° to 90° with varying difference between consecutive latitudes. 

Number of 
input latitudes 

Difference 
between 
consecutive 
latitudes 

Cumulative execution time (s) 
Geodetic → authalic latitude Authalic → geodetic latitude 
Old statements New 

statements 
Old statements New 

statements NumPy math NumPy math 
181 1° 2 ×10-3 4 ×10-4 6 ×10-4 1 ×10-3 4 ×10-4 6 ×10-4 
1 081 10’ 0.01 3 ×10-3 4 ×10-3 0.01 3 ×10-3 4 
10 801 1’ 0.11 0.03 0.04 0.07 0.03 0.04 
64 801 10” 0.66 0.16 0.24 0.41 0.15 0.24 
648 001 1” 6.90 1.61 2.43 4.19 1.64 2.47 
6 480 001 0.1” 67.99 15.92 24.09 41.92 15.77 24.33 
64 800 001 0.01” 685.90 163.15 245.48 429.99 159.05 246.38 

 

 
Figure 3.24. Total processing times for different number of executions (i.e., number of input latitudes). 

3.5.2 Compactness of the rHEALPix and QPix DGGS cells 

This section presents results of calculating compactness of the rHEALPix and QPix DGGS cells. 

Compactness was calculated for all cells in the rHEALPix and QPix DGGSs for resolution up to eight 

(first nine refinement levels) in a 1-to-4 refinement (Nside = 2) and up to 5 (first six refinement levels) 
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in a 1-to-9 refinement (Nside = 3). Figure 3.25 shows calculated compactness values for all cels in the 

rHEALPix and QPix DGGSs in a 1-to-4 refinement (Nside = 2) up to resolution five, while Figure 

3.26 also shows compactness, but for 1-to-9 refinement (Nside = 3). 

 
Figure 3.25 Compactness of rHEALPix and QPix DGGS cells for resolutions from 0 to 5 for a 1-to-4 refinement (Nside = 2). 

On Figure 3.25 and Figure 3.26, values on the abscissa are cell indices. Cell indices are 

determined by starting with index 0 from the utmost top left cell in the (0, 0)-rHEALPix or (0, 0)-

QPix projection plane (Figure 3.5 and Figure 3.14) and then increasing by 1 for each by following 

Morton space-filling curve (left-to-right and top-to-bottom, Figure 2.4). 
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Figure 3.26 Compactness of rHEALPix and QPix DGGS cells for resolutions from 0 to 5 for a 1-to-9 refinement (Nside = 3). 

Figures 3.27, 3.28, and 3.29 show compactness ranges, standard deviations, and means, 

respectively, for the rHEALPix and QPix DGGS cells up to a resolution eight for 1-to-4 refinement 

and up to resolution five for 1-to-9 refinement. For the 1-to-9 refinement (Nside = 3), as can be 

observed on Figure 3.26, for all resolutions except the first one (resolution 0), there are six 

compactness values that are clearly an outliers for the QPix DGGS, and two for the rHEALPix 

DGGS. We decided to remove these outliers prior to calculating means, ranges, and standard 

deviations for the 1-to-9 refinement in order to make them better represent compactness stability for 
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the whole population of cells on a specific refinement level. Since range and standard deviations are 

measures of variability in a dataset, they can, in this case, be considered as measures of cell shape 

stability. The lower the compactness standard deviation and range, the higher the cell shape stability 

and DGGS regularity. 

 
Figure 3.27 rHEALPix and QPix DGGS compactness ranges for resolutions 0–8 in a 1-to-4 refinement (Nside = 2) and 

resolution 0–5 in a 1-to-9 refinement (Nside = 3). 

 

 
Figure 3.28 rHEALPix and QPix DGGS compactness standard deviations for resolutions 0–8 in a 1-to-4 refinement (Nside = 2) 

and resolution 0–5 in a 1-to-9 refinement (Nside = 3). 
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Figure 3.29 rHEALPix and QPix DGGS compactness means for resolutions 0–8 in a 1-to-4 refinement (Nside = 2) and 

resolution 0–5 in a 1-to-9 refinement (Nside = 3). 

Figures 3.30 and 3.31 show spatial distribution of cell compactness on a global level for the 

rHEALPix and QPix DGGSs respectively. To get a better insight into variations in distribution and 

magnitude of compactness for the rHEALPix and QPix DGGSs, we calculated mean compactness 

and cell-wise absolute differences between cell compactness and corresponding mean compactness. 

Mean compactness values as well as cell-wise differences were determined separately for the 

rHEALPix and for QPix DGGS. These differences are shown on Figure 3.32 with a joint color bar. 

Color bar was defined so that approximately the same number of cells will be shown using the same 

color. Lower values are, of course, preferred on this figure from the high compactness stability 

standpoint. 

 
Figure 3.30 Compactness of the rHEALPix DGGS cells. 
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Figure 3.31 Compactness of the QPix DGGS cells. 

 

 
Figure 3.32 Cell-wise absolute differences between cell compactness and mean compactness for the rHEALPix and QPix 

DGGSs. Mean compactness as well as differences are calculated separately for the rHEALPix and QPix DGGSs. 
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4 Discussion 

4.1 Authalic latitude calculation 
When observing Figures 3.17 and 3.18 with box plots of calculation errors produced when converting 

geodetic to authalic latitude and vice versa, first thing that can be noticed is that overall magnitude of 

errors are for both conversion directions significantly lower for new statements that are based on 

Equations 3 and 4, than for old statements based on Equations 1 and 2. These box plots also show 

that calculation errors are not normally distributed but are in all cases right skewed with outliers that 

are the most extreme for old statements when converting geodetic to authalic latitude. Outliers are 

not present only for old statements when converting authalic to geodetic latitude, however, in this 

case also, distribution of calculation errors is right skewed. This means that mean values of calculation 

errors and standard deviations, that are sensitive to outliers, are not a good representation of all 

calculation errors. The interquartile range (IQR) is therefore a better representation. When 

converting geodetic to authalic latitude, new statements reduce IQR by approximately 8.8 times, 

while for the authalic to geodetic conversion direction, this reduction is at level of six orders of 

magnitude for new statements. 

If we concentrate on distribution of calculation errors across latitudes for converting geodetic 

to authalic latitude based on old statements, we can observe that errors increase as input geodetic 

latitude increases, with extreme values observed near the poles. Since Equation 1, that is used in old 

statements, is provided in closed form, computation errors consist only of round-off errors. 

Round-of error is initially introduced when converting input geodetic latitude from decimal to 

binary representation. It is then further transferred with every following calculation and finally 

accumulated in the argument of the arcsin function. By observing the graph of the arcsin function 

and of its derivative on Figure 4.1, it can be concluded that small changes in argument value near ±1 

(function value near ±90°) results in excessive change in function value. Even more, as argument 

approaches ±1, derivative of the arcisn tends to +∞. This means that arcsin function is extremely 

numerically unstable for arguments near ±1, which correspond to function values near ±90°, or 

latitudes near the poles. Therefore, it is not a surprise that observed calculation errors when 

converting geodetic to authalic latitude by using old statements are the largest near the poles. 
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Figure 4.1 Graph of the arcsin function and its derivative. 

For the opposite conversion direction (geodetic to authalic), old statements are based on 

Equation 2. This equation is provided as a power-series expansion in terms of eccentricity 𝑒𝑒 of 

ellipsoid of revolution, extending up to 𝑒𝑒6. As a result, in addition to round-off errors, it can be 

expected that a cumulative calculation error is also affected by truncation errors. As already stated, 

Karney (2013) provided equation for performing the same calculation but that is based on power-

series expansion in terms of third flattening 𝑛𝑛, up to 𝑛𝑛6. He also confirmed that this power-series 

expansion results in truncation errors that are at the ulp (unit in the last place) level. Li et al. (2022) 

compared expansions based on 𝑒𝑒 and 𝑛𝑛 and concluded that expansion in 𝑒𝑒 has to be extended up to 

𝑒𝑒10 in order to match the accuracy of expansion in 𝑛𝑛 up to 𝑛𝑛5. This suggests calculation errors in this 

case can be mostly attributed to truncation errors. To confirm this assumption, we subtracted power-

series expansion in Equation 2 from power-series expansion in terms of 𝑒𝑒 that was provided by Bian 

et al. (2012, Equation 48) up to 𝑒𝑒10 and got truncation error expressed by Equation 13. 

The graph of the absolute value function of this function (Equation 13) with argument 𝜙𝜙𝐴𝐴  

is shown on Figure 4.2. It is visible that this graph is in close resemblance to the absolute calculation 

errors that were observed for converting authalic to geodetic latitude using the old statements that are 

 



4 DISCUSSION 

78 
 

truncation error = �
120 389
181 400

𝑒𝑒8 + 1 362 253
29 937 600

𝑒𝑒10
� sin 2𝜙𝜙𝐴𝐴 

+ �
102 287

1 814 400
𝑒𝑒8 + 450 739

997 920
𝑒𝑒10

� sin 4𝜙𝜙𝐴𝐴 

+ �
47 561

1 814 400
𝑒𝑒8 + 434 501

14 968 800
𝑒𝑒10

� sin 6𝜙𝜙𝐴𝐴 

+ �
6 059

1 209 600
𝑒𝑒8 + 625 511

59 875 200
𝑒𝑒10

� sin 8𝜙𝜙𝐴𝐴 

+ �
48 017

29 937 600
𝑒𝑒10

� sin 10𝜙𝜙𝐴𝐴 

 

(13) 

 
Figure 4.2 Absolute value function of the function given by (5). 

based on Equation 2 and are visible on Figure 3.22. This proves that in this case the overall calculation 

error is mostly related to the truncation error, while round-off errors get obscured. 

Regarding the statements that are based on Equations 3 and 4, they can be considered as 

truncation-error-free at the double-precision floating point level (as shown by Karney (2024)). The 

only remaining source of calculation errors are the round-off errors. To minimize their effect, Karney 

(2024) suggests applying Horner method and Clenshaw summation for evaluating power-series 

expansions. As already stated, we applied Horner method, but did not use Clenshaw summation 

because it, or at least our implementation approach, slightly prolonged execution time. 

Concerning the impact of calculation errors of conversions between authalic and geodetic 

latitude on the area of rHEALPix DGGS cells, data in Tables 3.6 and 3.7 suggest that this impact is 

not significant from applicative point of view. When maximum observed errors in cell areas are put 
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into relation with the corresponding theoretical cell area, it turns out that error is on a ppb (parts per 

billion) level of the cell area. Although these errors can be considered as insignificant for most (if not 

all) applications, from data in Tables 3.6 and 3.7 it is visible that new statements that are based n 

Equations 3 and 4 have a result in a lower level of errors in cell areas. This means that new statements 

brought rHEALPix DGGS closer to being numerically equal area DGGS. This also means that (n, 

s)-rHEALPix map projection is also brought closer to being numerically area-preserving, which 

increases its reliability. 

By observing processing times on Figures 3.23 and 3.24, a couple of conclusions can be 

emphasized. Regardless of the value of the input latitude, processing time is stable for all six statement 

variants. As expected, when in old statements NumPy functions are replaced with math functions, 

significant drop in processing time is observed. In fact, these statements exhibit the shortest 

processing time. The longest processing time is observed for calculating authalic latitude from 

geodetic by using old statements. This suggests that statements that are based on Equation 1 are 

computationally the most demanding. The processing time of new statements is between NumPy- 

and math-based old statements. Although NumPy-based old statements exhibit the shortest 

processing time, since we deem calculation accuracy as more important, the final implementation of 

statements for bidirectional conversions between authalic and geodetic latitude are chosen those that 

we have been referring to as “new statements”. 

4.2 Comparison of rHEALPix and QPix DGGS geometrical properties 
Different DGGSs can be compared against each other with a focus on a particular characteristic that 

is important for a specific DGGS use-case. One of these characteristics is geometrical and topological 

properties of grids and their cells. As recorded by Kimerling et al. (1999), prof. Michale Goodchild 

formulated initial version of criteria for evaluating geometrical and topological characteristics of a 

global grid (i.e., ‘Goodchild criteria’; also listed in Table 4.1): (1) cells cover the entire earth model 

(sphere or ellipsoid) without overlapping, (2) all cells on a specific DGGS resolution (i.e., hierarchical 

level) have the same area, (3) all cells’ boundaries have the same number of vertices and edges (i.e., they 

are topologically equivalent), (4) all cells have the same shape, (5) cells are compact, (6) in a map 

projection plane, cell edges are straight lines, (7) when the center points of two neighboring cells are 
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connected with arc, its midpoint matches the midpoint of their joint edge, (8) grids of varying 

resolutions are organized hierarchically, (9) each cell has only one reference point, (10) reference 

points are centered as much as possible within the cells, (11) distances between reference points of 

adjacent cells are equal, (12) grid of reference points and cells is regular, which enables their simple 

addressing, (13) grid can be easily put into relationship with grid formed by meridians and parallels, 

and (14) spatial resolution of grids within the grid system can be defined arbitrarily. 

Kimerling et al. (1999) also state that it is not possible to fulfill all of these criteria at the same 

time and that some criteria might be important, while some completely irrelevant for a specific 

application. Also, some of these criteria can be either fulfilled or not (i.e., qualitative criteria, 

according to Wang et al. (2021)), while for some it is possible to determine a level of fulfillment (i.e., 

quantitative criteria, according to Wang et al. (2021)). Wang et al. (2021) categorize criteria 1, 3, 8, 9, 

10, 13, and 14 as qualitative and the rest as quantitative. Some authors (Luo et al., 2023; Wang et al., 

2021) argue that some of the Goodchild criteria are interdependent and redundant and can lead to 

unreliable DGGS comparison results. Wang et al. (2021) performed analysis of suitability of 

Goodchild criteria for evaluating geometrical and topological aspects of the QTM DGGSs 

(Section 2.1) and concluded that fourteen Goodchild criteria can be reduced to only six, four for 

qualitative evaluation and two for quantitative. Luo et al. (2023) concentrated on the seven 

quantitative Goodchild criteria for evaluating five DGGs with quadrangular (i.e., diamond) cells, 

some of which are equal-area and some are not. For the analyzed equal-area DGGs, they concluded 

that seven criteria can be reduced to only two, and for non-equal-area DGGs, to three. Although it is 

clear that some of the Goodchild criteria are redundant, since these reductions in number of criteria 

cannot be directly applied to all discrete global grids (as suggested by Luo et al. (2023)) and since we 

only want to make comparison between rHEALPix and QPix DGGSs, we decided to stick with the 

initial Goodchild criteria. 

From the quantitative Goodchild criteria, rHEALPix DGGS, as noted by  Gibb et al. (2013), 

fulfills criteria 1, 8, 9, and 14. This means that rHEALPix DGGS addresses the whole globe with the 

hierarchically organized cells, without overlaps between cells or constraints related to the minimum 

size of the cell. Each cell also contains a unique reference point which Gibb et al. (2013) refer to as 

nucleus point to emphasize that it is not a cell’s centroid. In the (n, s)-rHEALPix projection plane, 
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cells’ nuclei points and centroids coincide, but when they are projected to the ellipsoid by the inverse 

of the (n, s)-rHEALPix projection, they are not centroids of the ellipsoidal cells and are thus called 

nuclei. As a direct consequence, criterion 10 is not fulfilled. Gibb et al. (2013) provide mathematical 

formulations for calculating ellipsoidal cells’ centroids coordinates, however, they are not defined as 

reference points and require numerical integration. Along with criterion 10, criteria 3 and 13 are also 

not fulfilled. Both criteria are fulfilled in the equatorial region of the rHEALPix DGGS, but they fail 

at the polar regions. In the polar regions, skew quad cells have four edges, dart cells three, and polar 

cells only one. This means that cells do not have the same topology and are thus not fulfilling 

criterion 3. Criterion 13, which requires simple link between DGGS grid and geographical grid of 

meridians and parallels, is again not achieved in the polar region (Figure 3.6). 

From the seven quantitative criteria, rHEALPix DGGS fulfills criteria 2, 6, and 12, as 

reported by Gibb et al. (2013). Wang et al. (2021) categorized as quantitative those criteria that can 

be evaluated numerically and they also proposed various indicators for such calculations. These 

calculated values should then serve as an indication on how good specific DGGS conform to the 

criterion requirements. However, criterion 2, which requires that all cells have the same area, does not 

require calculations in the case of equal-area DGGS. Evaluating cell area without considering any 

theoretical assumptions makes sense only for determining whether a specific equal-area DGGS 

implementation is not deviating significantly from being truly equal-area (as we have done at the end 

of Section 4.1). Therefore, for the rHEALPix DGGS, criterion 2 can be considered as qualitative 

since it is analytically fulfilled. Situation is similar with criterion 6, which requires straight cell edges 

in the projection. It is also fulfilled for the rHEALPix DGGS since cells in the plane are constructed 

as squares (that have straight edges) and then projected to the ellipsoid/sphere. Calculations for 

determining the level of conformance to this criterion requirement are thus again not required in this 

case. Criterion 12 can be a little problematic, depending on the perspective from which it is 

approached. Kimerling et al. (1999) put an emphasis in this criterion on grid cell and reference point 

regularity from the indexing perspective, and point out that this regularity should ensure that some 

basic operations on grids, such as determining cell neighbor or traversing through resolutions, are 

simple. From this perspective, since cell indexing for the rHEALPix DGGS is performed in a plane 

where grid is rectangular and formed of isomorphic squares, it can be concluded that grid is highly 
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regular and enables conducting mentioned basic operations efficiently. Luo et al. (2023) and Wang et 

al. (2023) observe this criterion more from the perspective of the cell geometry on the sphere/ellipsoid 

and they propose calculating landscape shape index and fractal dimension in order to quantify it. 

Although for some other DGGSs this might be an interesting indicator for the highly regular 

rHEALPix DGGS and from the indexing perspective we do not find it important. 

The four remaining quantitative criteria that Gibb et al. (2013) did not find to be fulfilled are 

4, 5, 7, and 11. Criteria 7 and 11, that are related to cell centroids and reference points, are not met 

by the rHEALPix DGGS. This is clear from observing cells in the polar rHEALPix DGGS region on 

Figure 3.6 and in Appendices A.1 and A.2. We did not examine these criteria further since we do not 

find them relevant from the land cover data analysis perspective. Criterion 4 is certainly a quantitative 

one since it is not possible to tesselate sphere, and especially not ellipsoid, into a set of spherical 

polygons that have completely the same shapes, i.e., that are completely regular and congruent, except 

from the spherical versions of the five Platonic polyhedra (Lukatela, 2002). This means that besides 

Platonic spherical polyhedra, this criterion cannot be fully met and is therefore meaningful 

calculating quantitative indicators that should enable determining a level of conformity. Under the 

same cell topology (i.e., same number of edges), cell compactness (Section 3.4.3), or more specifically, 

its stability can be used as a good measure of stability of cells’ shapes. Stable compactness should 

correspond to stable cell shapes. Although topology of all rHEALPix DGGS cells is not the same, 

since most of the cells are quadrangles (quad and skew quad cells), at most two are circular (cap cells), 

and only a fraction of all cells are triangles (dart cells; according to Gibb et al. (2013), only 4�𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖 2⁄ � 

of them in resolution i). This means that for the rHEALPix DGGS, we can merge criterion 4 with 

criterion 5, which is specifically related to compactness. This is also true for the QPix DGGS that has 

all cells as that are quadrangles. Detailed analysis of compactness and comparison between rHEALPix 

and QPix DGGSs are given in Section 4.2.1. 

Since QPix DGGS is a modification of the rHEALPix DGGS, it inherited some of its 

properties, while some are not directly inherited but are also shared with QPix DGGS. From the 

qualitative Goodchild criteria, fulfillment of criteria 8, 9, and 14, and from the quantitative criteria, 

criterion 12 (that should, as already discussed, be considered as qualitative in this case) are directly 

inherited. This is due to planar grid versions being geometrically equivalent (apart from scaling) for 
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rHEALPix and QPix DGGSs and the same recursive subdivision method that is also the same. 

Criterion 1 (grid addresses global domain without overlapping) is also fulfilled by the QPix DGGS, 

this time it is not inherited from the rHEALPix DGGS but is a result of QPix DGGS design 

approach. Criteria 2 and 6 are also fulfilled; grid of congruent squares organized in the same way as 

for the rHEALPix DGGS is being projected from the plane by the inverse (n, s)-QPix map projection. 

This means that QPix DGGS is an equal-area DGGS (criterion 2) and that planar cells have straight 

lines for their edges (criterion 6). 

From the rest of criteria, since all ellipsoidal cells for the QPix DGGS are quadrangles and 

thus have the same topology, criterion 3, which was not met by the rHEALPix DGGS because of cap 

and dart cells, is for the QPix DGGS fully met. Criterion 10 is not satisfied by the QPix DGGS, and 

it was not intended to be satisfied by design. Although Wang et al. (2021) classify this criterion as 

qualitative, we believe that for some applications it can make sense to calculate distance between cell’s 

reference point and its centroid in order to compare various DGGSs. We decided not to perform this 

analysis since we do not see its direct value from the perspective of land cover data. The situation is 

the same for criterion 7 and 11, they are not met for the QPix DGGS but evaluating a level of their 

conformance we do not find significantly important for the land cover data. Although criterion 13 is 

not fully met for polar regions of the rHEALPix DGGS, it is still met for majority of cells (all cells in 

the equatorial region). In the polar regions, this criterion is only partly met. For skew quad cells, north 

and south cell edges follow parallels of latitude, south edge of dart cells in the north polar region and 

north edge in the south polar region also follow parallels, but the rest of the edges do not follow 

neither parallels nor meridians (figures in Appendices A.1, A.2, and A.5). For the QPix DGGS, this 

criterion is in general not met. Ellipsoidal cell edges for the QPix DGGS are not geodesic lines or lines 

from some other known class of lines on the ellipsoid but are rather some arbitrary lines (figures in 

Appendices A.1, A.2, and A.5). Only edges that are in plane laying on the axis-aligned straight lines 

drawn from the centers of each resolution 0 cells will be mapped to the meridians or parallels. This is 

because of the characteristics of the Roşca-Plonka projection, which, as explained by Roşca and 

Plonka (2011), is invariant in these directions. Additionally, edges can have this property of lying on 

axis-aligned lines only for even values of Nside parameter (Figure 3.13, figures in Appendix A.1). 
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The above findings across Goodchild criteria are summarized in Table 4.1. As already 

discussed, for some of these criteria it can be hard to determine whether they can be considered as 

qualitative (i.e., those that should use ticks and crosses in Table 4.1) or quantitative (i.e., those that 

should be computed and then use star symbols in Table 4.1). Therefore, we did not stick to the strict 

classification by Wang et al. (2021), but rather intended Table 4.1 to allow comparison between 

rHEALPix and QPix DGGS from the aspects that we consider important and that we find relevant 

for the land cover data. In this table, criteria 4 and 5 are also listed, however, their more thorough 

analysis is provided in Section 4.2.1. 

Table 4.1 Comparison of rHEALPix and QPix DGGS based on Goodchild criteria (as recorded by Kimerling et al. (1999)). 

Green tick means that criterion is fully met, red cross that it was not met, either fully or not at all, and for some criteria, 

number of stars correspond to the level of criterion fulfillment (five stars are maximum). 

Criterion Description rHEALPix QPix 

1 Addresses the global domain without overlapping. ✔ ✔ 
2 Cells have the same area. ✔ ✔ 

3 Cells are topologically equivalent (i.e., have the same 
number of edges and vertices). 

❌ ✔ 
(★★★) (★★★★★) 

4 and 5 Cells have the same shape and are compact. ★★★ ★★★★★ 
6 In map projection plane, cell edges are straight lines. ✔ ✔ 

7 
When the center points of two neighboring cells are 
connected with arc, its midpoint matches the 
midpoint of their joint edge. 

❌ ❌ 

8 
Hierarchy is established between grids of various 
resolutions. ✔ ✔ 

9 Each cell has only one reference point. ✔ ✔ 

10 
Reference points are centered as much as possible 
within the cell. ❌ ❌ 

11 
Distance between reference points of adjacent cells is 
equal. ❌ ❌ 

12 Grid is regular and can thus be efficiently indexed. ✔ ✔ 

13 
Grid can be easily related to the grid of meridians and 
parallels. 

❌ ❌ 
(★★★★) (★) 

14 
Spatial resolution of grids within the grid system can 
be defined arbitrarily. ✔ ✔ 
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Before moving to the compactness comparison between rHEALPix and QPix DGGSs, we 

would like to mention that the isolatitude property of the rHEALPix DGGS cell nuclei is not 

retained in the QPix DGGS. This property is lost because of the properties of projections used for 

mapping grids from plane to the sphere/ellipsoid. rHEALPix DGGS uses Lambert cylindrical equal 

area projection for equatorial region and pseudocylindrical Collignon projection for polar regions, 

both of which map parallels (and meridians) to straight lines in normal aspect (Kerkovits, 2023). In 

plane, cell nuclei (equivalent to cell centroids) that lie on the same straight line that is parallel to 

abscissa (i.e., projection of parallel) will thus all lie on the same parallel when mapped to the 

sphere/ellipsoid. Simple proof that confirms this property was lost for the QPix DGGS can be drawn 

from Figures 3.8 and 3.9. Composition of Roşca-Plonka and LAEA projection that is used in the 

QPix DGGS maps intersecting line between sphere and diagonal planes of the sphere-inscribed cube 

to straight lines. This interesting line is by definition a great circle and thus not a parallel, which means 

that not a significant number of cell nuclei on a specific DGGS refinement level lie on the same 

parallel. Isolatitude property, as already stated, enables efficient calculations of spherical harmonics. 

From the perspective of land cover data analysis, which most often includes determining areal 

statistics, we do not believe this fact can be perceived as a significant drawback of the QPix DGGS.  

4.2.1 Compactness of the rHEALPix and QPix DGGS cells 

As already discussed in Section 3.5.2, stability of compactness is a good measure of cell shape stability. 

The higher the compactness stability, the higher the shape stability. As explained by Wecker et al. 

(2024, Figure 2), equal area geodesic DGGS (both, rHEALPix and QPix DGGS are geodesic DGGSs 

that use cube as base polyhedron) ensure constant cell area, but at the cost of distortions in cell shapes. 

However, not all DGGSs introduce the same levels of shape distortions. 

In the rHEALPix and QPix DGGS, cell areas are constant, and will thus high compactness 

stability mean that cell shapes are highly regular. Although high compactness values are desirable 

from the land cover data perspective (in relation to the Tobler’s first law of geography, as recognized 

by Kimerling et al. (1999)), because of the reasons stated in the beginning of the Chapter 3, having 

quadrangular cells is more important. Quadrangular cells in general clearly deviate from the spherical 

cap that is on the sphere considered as the most compact shape, so we are not aiming at cell shapes 
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being as compact as possible (compactness values being as close to 1 as possible), but rather to low 

dispersion of compactness values. 

Regarding the initial tessellation (i.e., first hierarchical level, resolution 0), QPix DGGS 

effectively uses gnomonic projection to map edges of the sphere-inscribed cube to the sphere and is 

therefore creating one of the five possible tessellations of the sphere that are composed of regular and 

mutually congruent spherical polygons. Because of this, compactness of resolution 0 cells of the QPix 

DGGS should be constant, as can be observed on Figures 3.25 and 3.26 (top left graphs). On these 

two figures compactness is not fully constant (i.e., line is slightly bended) because these figures are 

related to the DGGS on the WGS 84 ellipsoid and not sphere. When cells are mapped from the sphere 

to the ellipsoid by using authalic latitude, their shape gets slightly deformed. Since WGS 84 is an 

oblate ellipsoid of revolution and has the highest curvature at the equator, four cells that intersect the 

equator come closer to the circular shape and become slightly more compact. On the second level 

(resolution 1) and for Nside = 2, cells of the QPix DGGS have lower, but again almost constant 

compactness since they all have almost the same (but not regular) shape (this tessellation would be 

the same as with gnomonic projection; Appendix A.1). For all other refinements, compactness gets 

dispersed. For the rHEALPix DGGS, initial tessellation is not regular, and it was not designed to be. 

The north and south polar regions of the rHEALPix DGGS are cells themselves in the first level and 

are spherical/ellipsoidal caps. Therefore, as can be observed on Figures 3.25 and 3.26, they have the 

highest possible compactness value of 1. When Nside parameter is odd number, on each refinement 

level rHEALPix DGGS has two cap cells that have compactness value equal two 1 and this 

compactness values can be taken as outliers since they are significantly different than the rest of the 

values (Figure 3.26). Similar is the case for the odd values of Nside parameter for QPix DGGS for cells 

that are centered within each of the six initial cells. As visible on figures in Appendix A.2, these cells 

are highly circular and thus have high compactness values. The same, but with a lover magnitude, is 

also true for the four QPix DGGS cells that have one vertex corresponding to the centroid of the one 

of the six initial cells in a refinement with even Nside values. Additionally, from the Figures 3.25 and 

3.26, it is visible that compactness values for the rHEALPix DGGS significantly deviate from the 

compactness values of cells in the equatorial region. This is the main reason why compactness ranges 
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(Figure 3.27) and standard deviations (Figure 3.28) are consistently larger and means (Figure 3.29) 

are consistently lower for the rHEALPix DGGS than they are for the QPix DGGS. 

Compactness ranges on Figure 3.27 and standard deviations on Figure 3.28 again show that 

cell shapes are the most stable (compactness ranges and standard deviations are near zero) at 

resolution 0 for the QPix DGGS, while for the rHEALPix DGGS at the same resolution they are 

found to be the largest overall. The reason behind these large values has already been discussed; it is 

related to the fact that for the initial rHEALPix DGGS tessellation two cells are polar 

spherical/ellipsoidal caps that have maximum compactness value of 1, while other cells are 

spherical/ellipsoidal quadrangles that are bound by two meridians and two parallels and thus have 

significantly lower compactness. For the rHEALPix DGGS resolution 1, range and standard 

deviation experience a steep fall in comparison to the resolution 0. In case of 1-to-4 refinement, this 

is due to absence of highly compact cap cells in resolution 1, and in case of 1-to-9 refinement it is 

related to the fact that compactness values for cap cells were filtered out as they are identified as 

outliers. As the resolution increases, for both analyzed refinement ratios and for both DGGSs, 

compactness ranges and standard deviations are stabilizing. There is no reason to expect that some 

irregularities might occur on the higher resolutions that were not analyzed. Therefore, from Figures 

3.27 and 3.28, it can be undoubtedly concluded that cell compactness is consistently more stable 

across resolutions for the QPix DGGS than it is for the rHEALPix DGGS. 

In addition, Figure 3.29 shows that mean compactness values are also consistently larger for 

the QPix DGGS. This means that QPix DGGS cells are in general more compact. Also, if consider 

that compactness of square is approximately 0.8, this means that from data on Figure 3.29, QPix 

DGGS cells are on average closer to being square-shaped than rHEALPix DGGS cells are. This can 

also be perceived as some kind of advantage of the QPix DGGS if the aim is ensuring that cell shapes 

are in resemblance with earth observation satellite sensor detector footprints, which are, in general, 

square-shaped. 

Regarding the geographical distribution of cell compactness values, the following can be 

observed from the Figures 3.30, 3.31, and 3.32. On Figure 3.30, it is visible that compactness of the 

rHEALPix DGGS is the most stable in the equatorial region and becomes unstable in the polar 

regions. In polar regions, deviations are becoming the largest when approaching dart cells. This is 
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expected since the shape of dart cells is triangular and thus notably different from quadrangular shape 

of other cells. For the QPix DGGS (Figure 3.31), deviations are the largest for cells that in the plane 

lie on the diagonals of the initial resolution 0 squares. From figures in the Appendices A.1 and A.2 it 

is visible that these cells have the most distorted shapes. However, by observing values in the color 

bars of these two figures, it is visible that magnitude of compactness deviations is lower for the QPix 

DGGS. This is also confirmed on Figure 3.32, where it is, once again, clearly visible that QPix DGGS 

has cells with more stable shapes. 

4.3 Comparison of QPix DGGS and “traditional” global gridding approaches 
In Section 3.1, the main drawback of currently applied approaches for global gridding were examined. 

To reiterate, global raster land cover data are currently being delivered in projected or geographic 

CRSs (Table 1.1). Global grids that are defined by rasters in projected CRSs are burdened with 

deformations of shapes and/or areas, they introduce the need for resampling of initial raw 

observations resulting in degradation of data quality and possibly loss or replication of data. Even the 

grid defined in the projected UTM-based CRSs, which exhibits deformations that are negligible for 

most applications, brings challenges for global data handling since this grid is effectively defined in 60 

different CRSs. In geographic CRS, the greatest problem from the land cover data is that equiangular 

geographic grid defines tessellation that is not equal area. It further introduces replication of data 

because of meridian convergence. Geodesic DGGSs, on the other hand, since they treat earth’s surface 

as being homeomorphic to a sphere/ellipsoid (Tobler, 1993), solve, or at least reduce some of these 

issues. 

In addition to these qualitative challenges of dealing with grids defined in projected and 

geographic CRSs, in this section our aim is to briefly examine quantitative indications of performance 

in achieving uniform global tessellation between DGGS, namely QPix DGGS, and these 

“traditionally” applied approaches. As a uniform global tessellation, we consider the one that exhibits 

high stability of cell areas and shapes. We examined three global grids: QPix DGGS, equiangular 

geographic grid (EGG), and grid that is based on interrupted Goode Homolosine (IGH) map 

projection. We chose IGH map projection because it is often recommended choice from the equal 
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area projections that are suitable for performing global analyses (Moreira de Sousa et al., 2019; Simoes 

et al., 2024). All these three grids were again constructed on the WGS 84 ellipsoid (EPSG, n.d.-a). 

The QPix DGGS grid was fixed to resolution 5 with Nside parameter set to 3 (1-to-9 

refinement; hereafter referred to as QPix grid). According to Table 3.2, on WGS 84 ellipsoid, this 

QPix grid has cells that have an area of 1 439 667 681.99 m2. The square root of this value is 

37 942.95 m, and it can be taken as a rough estimate for length of an edge of quadrangular QPix cells. 

EGG and IGH-based grids were formed with these values in mind in order to ensure that all three 

grids are in resemblance regarding the cell sizes. Therefore, EGG grid was defined so that cell sizes are 

0.3155” × 0.3155”, which at the equator corresponds to cells of approximately 34 886.20 m in east-

west direction and 35 121.30 m in north-south direction. Constructing an IGH-based grid included 

more steps. IGH projection is a spherical projection, so we needed to establish a mapping from sphere 

to ellipsoid and vice versa. We again used authalic latitude for this purpose since we want to retain 

equal area property of IGH projection. The first step was thus projecting the authalic sphere of the 

WGS 84 ellipsoid (authalic sphere radius is approximately 6 371 007.1809 m) to the plane by the 

IGH projection. This way, we determined the co-domain of the projection, i.e., the extent for 

defining tessellation in the plane. We defined cells as squares having sizes of 38 km × 38 km in plane, 

meaning that their area on authalic sphere and on WGS 84 ellipsoid will be 1 444 km2, again relatively 

close to the area of QPix grid cells. In order to avoid issues in subsequent steps, only cells that were 

fully within the co-domain of the IGH projection were selected, and all other cells were discarded. 

These cells were projected to the authalic sphere by the inverse IGH projection and then by applying 

authalic latitude to the WGS 84 ellipsoid. 

For all these three grids, we calculated areas and perimeters of all cells on the WGS 84 

ellipsoid. We applied the same procedures as explained in Sections 3.4.1 and 3.4.2 for these 

calculations, with a difference that we densified each cell edge with only 20 vertices, mainly to speed 

up processing, while also not expecting any significant impact on comparison results between these 

grids. From cell perimeter and area, we also calculated spherical compactness of each cell, in line with 

Equation 12 in Section 3.4.3. 

Again, we consider uniformity of global grid, which essentially defines global sampling, from 

the perspective of stability of cell areas and shapes (higher stability–higher grid uniformity). As 
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already discussed, stability of cell shapes is examined through stability of cell compactnesses. 

Regarding the cell area, QPix grid and IGH-based grid define equal area tessellation, i.e., cells have 

constant area. In other words, and in an analytical sense, these two grids achieve full stability of area. 

Variations in area can only occur because of the numerical instability related to computations in the 

grid construction process or because of the flaws in the area calculation approach (e.g., insufficient 

number of densification points). The EGG grid on the other hand does not. Only cells that are 

intersected with the same parallel and its antiparallel (i.e., parallel symmetrical with respect to the 

equator) have the same area. This is, of course, a well-known fact and is visible on Figure 4.3. This 

figure shows standardized cell area which was calculated in line with the suggestion by White et al. 

(1998)—as a cell-wise ratio between cell area and maximum observed cell area. Clearly, from the 

perspective of stability of cell area, QPix grid and IGH-based grids are a better choice than the EGG 

grid. 

 
Figure 4.3 Distribution of the standardized cell area of the EGG grid. 

Regarding the stability of cell compactness, Figure 4.4 shows box plots of calculated 

compactness values. QPix grid has the lowest range and interquartile range, IGH-based grid has 

larger, and EGG has the largest. This means that cell shapes are the least dispersed, or the most stable 

for the QPix grid. 

Figure 4.5 shows spatial distribution of cell-wise absolute differences between mean 

compactness value and each cell compactness for the EGG grid and QPix grid. Outlier-adjusted mean 

compactness values and then subsequent absolute differences were calculated separately for the EGG 
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Figure 4.4 Box plots of cell compactness for three analyzed global gridding approaches: gridding based on interrupted 

Goode Homolosine projection, QPix DGGS grid, and equiangular geographic grid. 

 

 
Figure 4.5 Cell-wise absolute differences between cell compactness and mean compactness for the EGG (equiangular 

geographic grid) and QPix grid. Mean compactness as well as differences are calculated separately for the EGG and for QPix 

grids. 
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grid and for the QPix grid, however, they were colored using the same color bar to make them directly 

comparable. Color bar was defined so that approximately the same number of cells will be shown 

using the same color. The same was done for the comparison between compactness differences of 

IGH-based and QPix grids and results are shown on Figure 4.6. 

On Figures 4.5 and 4.6, lower values are preferred if the aim is to ensure high stability of cell 

shapes. Distribution of compactness differences is for QPix grid, as expected, the same as on Figure 

3.32. For EGG grid on Figure 4.5, cells that are near ±65° latitude have compactness that is near the 

mean of all cells compactness values. This clearly indicates that for EGG grid, compactness is not 

linearly distributed along meridians and gets highly dispersed by approaching poles (also visible from 

distribution of standardized cell areas on Figure 4.3). Distribution of compactness differences for 

 
Figure 4.6 Cell-wise absolute differences between cell compactness and mean compactness for the IGH-based (IGH–

interrupted Goode Homolosine) and QPix grid. Mean compactness as well as differences are calculated separately for the 

IGH-based and QPix grids. 
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IGH-based grid on Figure 4.6 shows some clear lines of discontinuity that are related to the IGH map 

projection definition. This projection is a combination of interrupted Sanson’s sinusoidal projection 

for latitudes up to ±40° 44’ 11.8”, and interrupted Mollweide’s projection for latitudes beyond 

(Goode, 1925). Therefore, a line of discontinuity in compactness difference distribution on Figure 

4.6 is following parallels where switch between two projections is made. Additional lines of 

discontinuity follow meridians along which projections are interrupted. According to Goode (1925) 

and Steinwand (1994), for the northern hemisphere, meridian that has longitude of -40°, and for the 

southern, meridians with longitudes of -100°, -20°, and 80° are meridians along which interruptions 

are introduced. In addition to discontinuities, along these meridians on Figure 4.6 can also be 

observed gaps that are a result of excluding cells from the IGH-based grid that were not fully within 

the extent of the co-domain of the IGH projection of the authalic sphere. 

From these two figures above, and from box plots on Figure 4.4, it is clear that cells in the 

QPix grid have a higher shape stability than cells in the IGH-based and EGG grid. Therefore, an 

overall conclusion is that (QPix) DGGS solves or at least reduces issues that are related to handling 

global raster/gridded data in geographic and projected CRS, while also, specifically in the case of the 

QPix DGGS, provides a more uniform global tessellation/sampling. Lastly, we would like to 

acknowledge a couple of limitations related to this conclusion. Since we concentrated only on global 

tessellation approaches that are currently employed in relation to land cover data, this conclusion 

should also be viewed from that perspective. For some other application areas, aspects that we see as 

disadvantageous might not be disadvantageous at all. Then, we disregarded UTM-based tessellation, 

mainly because it uses 60 different CRSs to georeference global data. We see this as a deficiency since 

it, in general, does not allow global data to be stored within the same data file, which is something 

that is highly desirable in respect to cloud-optimized data formats. However, in some processing 

pipelines, this might not pose an obstacle. And finally, it is certainly possible that there is some global 

tessellation that exhibits higher uniformity than that of QPix DGGS, however, our goal was not to 

achieve the most uniform tessellation, but rather to show that it is possible to overcome some of the 

issues that are related to current approaches related to the land cover data storage and handling. 
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5 Application of DGGS on land cover data 

In this chapter, we used the GLC_FCS30D global land cover dataset (X. Zhang et al., 2024) for 

calculating land cover change. As already stated in Section 1.1.4, GLC_FCS30D land cover product 

includes 35 land cover classes and is suitable for land cover change analysis because it applies a 

mechanism that ensures temporal stability of land cover classification. In these land cover change 

calculations, we applied two constraints in order to reduce computational overhead but that will not 

reduce relevance of the results for the aim of this chapter–demonstrating that it is possible to use 

DGGS as a georeferencing system for land cover data. The first constraint was to focus only on built-

up land cover class, or more specifically, land cover class that is referred to as “impervious surface” in 

GLC_FCS30D. As X. Zhang et al. (2024) state, they have developed a separate land cover product 

that focuses specifically on this land cover class and have subsequently superimposed it with 

GLC_FCS30D data to ensure high classification accuracy of impervious surfaces. Additionally, this 

land cover class is interesting because observing its changing over time is often perceived as an 

indicator of impact of human activities on the environment and vice versa. The second constraint 

was to limit analysis only on the coastal zone of the Adriatic Sea. This coastal zone is defined as a land 

that goes 10 km from the coastline (hereafter referred to as 10-km coastal zone). This zone was chosen 

because it is often perceived as an area with a high level of urbanization, which means that, again, 

results might be interesting for examining human impact on environment. However, we 

acknowledge that the choice of the geographical extent for the analysis has no relevance in 

demonstrating application of DGGS for land cover data. Finally, we decided to calculate built-up 

land cover change in this 10-km coastal zone for the 10-year period, between 2010 and 2020. 

GLC_FCS30D data are delivered as GeoTIFF files georeferenced in WGS 84 geographic 2D 

CRS (EPSG, n.d.-c). In all GeoTIFF files, pixels (or grid cells) have size of 0.97” × 0.97” (Table 1.1). 

This means that land cover data in GLC_FCS30D are provided in an equiangular geographic grid 

and that pixel edges correspond to meridians of longitude and parallels of latitude. Since the 10-km 

coastal zone approximately spans between 39° 38’ N and 45° 53’ N, the cell sizes vary from 20.92 to 

23.13 m along parallel (i.e., east–west) and from 29.92 to 29.95 m along meridian (i.e., north–south). 

These distances can be easily calculated by using equations that are available in (Lapaine, 1994) and 
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in (Rapp, 1991, Equation 3.115 and 3.122). Regarding an area of the pixels, since they are bound by 

two parallels and two meridians, a closed-form equation is available (Kelly and Šavrič, 2021; Lapaine 

and Lapaine, 1991). By using these equations, it can be calculated that pixel areas within the 

geographical extent of land cover change calculation vary from 626.40 m2 to 692.00 m2. 

 
Figure 5.1 Pixel in a raster that is georeferenced in the equiangular geographical grid is bound by two meridians with 

longitudes λ1 and λ2 and two parallels with latitudes φ1 and φ2. 

5.1 Methodology 
The first step of calculating land cover change was generating a vector layer with polygon 

corresponding to the 10-km coastal zone. Coastline was extracted from the OpenStreetMap data 

(https://www.openstreetmap.org/), transformed to the WGS 84 geographic 2D CRS and then a 

10-km geodesic buffer zone was generated on the ellipsoid on the inland side of the coastline. Country 

administrative borders were also extracted from the OpenStreetMap data and after transformation 

to the WGS 84 CRS, intersected with the 10-km coastal zone. This produced six vector polygons, 

one for each country (Albania, Bosnia and Herzegovina, Croatia, Italy, Montenegro, and Slovenia; 

San Marino was also partly within the 10-km coastal zone but was excluded because of relatively small 

area in comparison to other countries), that were used for aggregating built-up land cover data. 

The area of built-up land cover class for 2010 and 2020, as well as their change was calculated 

by using four methods. The main difference between methods was related to their adaptation to the 

way land cover data were georeferenced. In the first method, areas of built-up land cover class were 

calculated directly from the original, unaltered GLC_FCS30D data, meaning that data were 

https://www.openstreetmap.org/
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georeferenced in the WGS 84 geographic CRS (hereafter, WGS84-based method). In the second 

method, original GLC_FCS30D data were reprojected to the “ETRS89-extended / LAEA Europe” 

projected CRS (EPSG, n.d.-b; hereafter LAEA-based method).  We chose this CRS because it is 

suggested by the INSPIRE Data Specification of Geographical Grids (INSPIRE Temporary MIWP 

2021-2024 sub-group 2.3.1, 2023) for spatial statistical reporting within continental Europe. The 

third and fourth method were based on the rHEALPix (hereafter, rHEALPix-based method) and 

QPix (hereafter, QPix-based method) DGGSs, respectively. Figure 5.2 shows initial GLC_FCS30D 

data georeferenced in the WGS 84 geographic CRS, as well as the same data after reprojecting and 

resampling (i.e., regridding) into LAEA-based projected CRS and rHEALPix and QPix grids. The 

rHEALPix and QPix grids are shown on this figure for visualization purposes only, since only pixels 

that were classified as built-up were regridded from the initial GLC_FCS30D data to the rHEALPix 

and QPix grids, as explained later on. 

For the second, LAEA-based method, in order to maintain similar sizes between initial pixels 

and pixels in reprojected raster, we chose pixel sizes in LAEA-based CRS to be 22 m along abscissa 

and 30 m along ordinate. As a result, all pixels in the LAEA-based CRS represent an area of 660 m2 

and correspond to cells on ellipsoid that have that same area. Since initial GLC_FCS30D pixels have 

an area between 626.40 m2 and 692.00 m2 within the geographical scope of analysis, we believe that 

pixels with an area of 660 m2 are their good approximation. As a resampling method, the nearest 

neighbor method was applied, which is the only sensible resampling method for categorical land cover 

data with discrete classes. 

For the rHEALPix-based and QPix-based methods, the first step was determining resolution 

(i.e., refinement level) and value of the Nside rHEALPix and QPix DGGS parameter (i.e., refinement 

ratio) that will yield cells of approximately the same area as initial GLC_FCS30D cells. Based on areas 

of rHEALPix and QPix DGGS cells on WGS 84 ellipsoid for various resolutions and values of Nside 

parameter that are provided in Annex B, resolution 5 grid for the Nside parameter value of 13 yields 

cells whose area most closely match those of original GLC_FCS30D pixels. For both the rHEALPix 

and QPix DGGSs at this resolution, each cell has an area of 616.65 m2. Although this area is lower 

than the minimum area of the GLC_FCS30D pixels within the extent of analysis, 
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Figure 5.2 Initial GLC_FCS30D land cover data in WGS 84 CRS (on top) and the same data after reprojecting and 

resampling in the LAEA projection (22 m × 30 m pixels), and rHEALPix and QPix Nside = 13, resolution 5 grids. Figure shows 

Sveti Ivan island near Rovinj, Croatia in the transverse Mercator projection with central meridian 13° 37’ E. 
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we do not find it as problematic as in opposite situation—area of DGGS cells being larger than the 

maximum GLC_FCS30D area. If DGGS cell area is larger than initial raster pixel area, then, as was 

also recognized by Kmoch, Matsibora et al. (2022), certain level of data loss during resampling might 

occur. On the other hand, if DGGS cell area is smaller, then data replication, which results in 

additional processing demands, is expected. Since DGGS cells do not have area that is drastically lower 

than the GLC_FCS30D pixel area, we do not expect this issue will have impact on final results. To 

map GLC_FCS30D data to these rHEALPix and QPix grids, we again applied the nearest neighbor 

resampling method. For each rHEALPix and QPix cell we determined its reference point (i.e., 

nucleus according to the rHEALPix terminology) and then extracted the value of the GLC_FCS30D 

pixel (i.e., land cover class) that contains that reference point. If pixel was classified as built-up land 

cover class, we stored the corresponding cell’s reference point in GeoParquet 

(https://geoparquet.org/) file, along with information whether pixel is classified as built-up for 2010 

and/or 2020. This way we generated two GeoParquet files, one for the rHEALPix and another one 

for the QPix grid. 

After this processing, calculating land cover change for the LAEA-, rHEALPix-, and QPix-

based methods is straightforward. For the LAEA-based method, for each country we counted how 

many pixels that are classified as built-up fall within the 10-km coastal zone, separately for 2010 and 

2020. These numbers of pixels are then multiplied by the area of each pixel, which is 660 m2, and the 

result is the built-up area for corresponding country and year. For the rHEALPix- and QPix-based 

methods, procedure is in essence the same, with the difference that instead of pixels, points are being 

counted. Of course, the number of points is in this instance multiplied by 616.65 m2 as it is the area 

of rHEALPix and QPix cells. 

For the WGS84-based method, procedure requires a couple of additional steps. As already 

mentioned, pixels in initial GLC_FCS30D raster data are bound by two meridians and two parallels 

and their area can be easily calculated (Kelly and Šavrič, 2021; Lapaine and Lapaine, 1991). Therefore, 

the first step was to generate an additional raster that is aligned to GLC_FCS30D raster, has the same 

pixel size as the pixels in the GLC_FCS30D raster, and in which each pixel value corresponds to that 

pixel’s area (hereafter, area raster). Concretely, for this purpose we used a r.mapcalc.simple command 

that is available in the GRASS GIS application (GRASS Development Team, 2024).  In the 

https://geoparquet.org/
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subsequent step, two new rasters are generated—one for 2010 and one for 2020—each retaining only 

the values (i.e., pixel areas) from the area raster that overlap with pixels classified as built-up land cover 

in the GLC_FCS30D dataset for the respective year, while all other pixels are set to 0 or a nodata 

value. Finaly, to calculate the area of built-up land cover class for each year, we just needed to sum-up 

all pixel values in these two rasters that are within each countrie’s 10-km coastal zone. 

To reiterate, we have calculated area of built-up land cover class within the 10-km coastal zone 

for six countries by applying four different calculation methods. We performed these calculations 

twice, for years 2010 and 2020, and then we additionally calculated changes in built-up areas between 

these two years. Our goal is to determine whether results obtained by four different methods differ 

significantly or not. If we concentrate on one year only, results obtained by four different methods 

can be treated as four dependent groups of measurements, each having six observations, one for each 

country. Since there are less than 10 observations in each group of measurements, performing a non-

parametric statistical test, in this case namely Friedman test, is advised (Corder, 2014; Warner, 2013). 

We thus performed Friedman test for comparing results of all four methods, separately for 2010, 

2020, and for calculated changes in built-up area between 2010 and 2020. We performed these 

calculations in Python, using SciPy package (Virtanen et al., 2020), in line with procedure explained 

by Corder (2014). This procedure also includes performing post hoc Wilcoxon test in cases when 

Friedman test suggests rejecting the null hypothesis of no significant differences between methods. 

Therefore, we performed the Wilcoxon test pairwise between WGS84-based method and three other 

methods. This means that WGS84-based method was used as a baseline method, mainly because it 

uses unaltered GLC_FCS30D data, while all other methods introduce modifications of initial 

GLC_FCS30D data. The Wilcoxon test will thus show whether there are significant differences 

between WGS84-method and any of the other methods. Corder (2014) also suggest performing 

Bonferroni procedure to reduce the rate of faulty rejections of the stated null hypothesis by reducing 

the level of significance. We chose level of significance α to be 0.05 for Friedman tests, which, after 

applying Bonferroni procedure reduced to αB = 0.017 for Wilcoxon tests (again in line with Corder 

(2014)). 

For the Wilcoxon test, we used the SciPy function wilcoxon, that returns Wilcoxon test 

statistic and p-value. This function, by default, ensures that p-value is calculated using the method 
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that will, based on the characteristics of the two input groups of measurements (e.g., number of 

observations in each group), yield the most reliable result. Therefore, we used p-value to determine 

whether there are significant pairwise differences between methods or not. For the Friedman test, we 

used the SciPy function friedmanchisquare, which again returns Friedman test statistic and p-value. 

The p-values are based on the assumption of chi-squared distribution,  which means that p-values are 

not reliable in cases when there are less than 10 observations in each group of measurements (The 

SciPy community, 2025). Therefore, for the Friedman test, we primarily used the  Friedman test 

statistic, and compared it against critical values from the lookup table (Corder, 2014, Table B.5) in 

order to determine whether differences between methods are significant. 

5.2 Results 
All results of calculating area of built-up land cover class for 2010 and 2020, as well as their 

changes, are available in Table 5.1. Changes in built-up area in this table are calculated by subtracting 

built-up area in 2010 from built-up area in 2020. This means that positive values correspond to the 

increase of built-up area, and negative to its decrease. Changes are also expressed as percentages, 

calculated as the ratio of the change in built-up area to the built-up area in 2010. Table 5.1 additionally 

provides absolute differences between WGS84-based built-up areas and their changes and other three 

methods. Differences are also expressed as percentage of the corresponding WGS84-based area. 

Table 5.2 lists test statistics and corresponding p-values obtained by the Friedman test, 

separately applied on each of the three datasets (i.e., on calculated built-up areas for 2010, 2020, and 

on the changes in built-up areas between 2010 and 2020). Test statistics and corresponding p-values 

obtained by the Wilcoxon tests for pairwise comparison between WGS84-based method and other 

three methods within each dataset, are available in Table 5.3. From the data presented in Table 5.2, it 

is evident that for all three datasets, the Friedman test statistic values fall below the critical value of 

7.600, and all p-values, although potentially unreliable, exceed the level of significance α = 0.05. These 

results indicate no statistically significant differences among the four applied methods. Wilcoxon tests 

support this conclusion—all calculated p-values are above the Bonferroni-reduced level of 

significance αB = 0.017. Therefore, based on both tests, it can be concluded that there are no 

significant differences between results obtained by the four analyzed methods.  
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Table 5.2 Friedman test statistics and corresponding p-values for three datasets (built-up for 2010, built-up for 2020, and 

built-up change), each containing six built-up area calculations (one for each country) obtained by four different methods. 

 Dataset   

 Built-up for 2010 Built-up for 2020 Built-up change 

Test statistic 7.000 2.600 0.000 

p-value 0.072 0.457 1.000 
Critical test statistic value = 7.600 (for 4 groups of measurements with 6 observations in each group, 
under α = 0.05) 

Table 5.3 Wilcoxon test statistics and corresponding p-values for pairwise comparison between WGS84-based method and 

other three applied methods. Pairwise comparisons were performed separately within each dataset. 

  Dataset   

  Built-up 2010 Built-up 2020 Built-up change 

WGS84 vs. LAEA Test statistic 0.000 1.000 6.000 

 p-value 0.031 0.063 0.438 

WGS84 vs. rHEALPix Test statistic 4.000 5.000 6.000 

 p-value 0.219 0.313 0.438 

WGS84 vs. QPix Test statistic 2.000 3.000 6.000 

 p-value 0.094 0.156 0.438 
α = 0.05, after Bonferroni reduction αB = 0.017 

5.3 Discussion and conclusions 
The aim of this chapter was to demonstrate application of DGGS on a task that is common when 

working with land cover data—calculating area of a specific land cover class for two years and then 

determining magnitude of change of that specific land cover class. These calculations were performed 

directly from the original data (WGS84-based method) which might, in general, be considered as 

traditionally not preferred one. On the other hand, the second method that included reprojecting 

raster data from the geographic to the LAEA-based projected CRS, would probably be the first choice 

by most of the GIS professionals, without considering possible effects of such approach on obtained 

results. The last two methods (rHEALPix- and QPix-based methods) are to a certain degree similar 

to the LAEA-based method. The main difference is that instead of the planar raster model, the last 

two methods use grid from a specific DGGS refinement level. 
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Regardless of the calculation method used, results show there are no statistically significant 

differences between obtained results. To a certain degree, this was expected. Although regridding 

results in various interrelated issues, such as, data loss or replication, spatial shifts, and change in 

pixel/cell sizes, if regridding is performed carefully, then on a large dataset these issues tend to have 

minimal effect on results, i.e., they tend to get obscured by the volume of data. Under carefully 

performed regridding, here we consider choosing a suitable pixel/cell size in a target grid and ensuring 

that target grid will not get too distorted in comparison to the source grid within the geographical 

scope of analysis. The fact that no statistically significant differences between methods were observed 

in this case confirms that regridding parameters were chosen appropriately. When performing small-

scale analysis, there are many projected CRS-based options to choose from, but when analysis 

becomes large- or global-scale, than various benefits of DGGS comes into play (Sections 3.1 and 4.3).  

Here we are not interested in the interpretation and implications of the obtained built-up 

areas and their changes from the environmental perspective, thus we omit them. We also do not find 

meaningful extensive examination of the data in Table 5.1 since the four analyzed methods clearly do 

not produce significantly different results. However, we would like to point out two interesting 

details. First is related to the high percentage in change difference for Slovenia based on rHEALPix-

based method. This percentage of 25% is higher than in any other instance mainly because WGS84-

based change of -0.16 km2 that was used as a baseline for calculating percentage of 25% is very small. 

By “very small” we mean that area of 0.16 km2 is not sufficiently larger than the average cell/pixel area 

and thus regridding-related issues get exaggerated. This should be kept in mind when analyzing 

results. The second one is related to the differences between built-up area changes between methods. 

They are almost without an exception lower than differences in built-up areas for each year. This 

means that specific method almost always either overestimates or underestimates areas for each year 

and when change between years is calculated, these biases tend to cancel each other out. 

It is interesting to notice that after regridding original GLC_FCS30D data to the rHEALPix 

and QPix DGGSs, we decided to store land cover data as points in GeoParquet files. Of course, 

instead of points, we could use polygons that represent DGGS cell edges. At first sight, it might seem 

that we stored DGGS-based data by using a vector data model. However, this is only partly the case. 

We had to store DGGS cells either as polygons or as their representative points because we had to 
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perform calculations that included aggregation on the 10-km coastal zone that is provided as a 

polygonal vector. We decided to use points mainly because of the more efficient calculation workflow; 

counting points in polygons is computationally efficient than, for example, intersecting many 

polygonal cells with 10-km polygonal coastal zone. Geometry, whether in form of points, lines, or 

polygons, is essential from the perspective of a vector data model. Geometry is required because vector 

data model is based on coordinates for storing location of, firstly points, and then lines and polygons. 

From the DGGS perspective, reference to cell geometry in that sense is unnecessary. Location in 

DGGS is not defined by coordinates but by unique cell indices, without any mention to traditional 

geometric primitives. For example, the raster2dggs Python package (Ardo and Law, 2024), that can 

be used to convert data that are georeferenced by using raster data model to DGGS data model, 

outputs results in a Parquet files (not GeoParquet) without a reference to cell geometry. One of the 

columns in this Parquet file is reserved for cell indices. If required, and if some specific DGGS 

implementation supports it, cell geometry, either polygonal or as a cell’s reference points, can be 

generated from cell index at any time. This means that if 10-km coastal zone was georeferenced by 

using DGGS data model (based on rHEALPix or QPix), analysis could have been performed without 

reference to points or polygons. Some of the approaches of transferring points, lines, and polygons 

to DGGS are suggested by, for example, Hojati et al. (2022) and Kmoch, Matsibora, et al. (2022). In 

our case, the same rHEALPix or QPix grid to which GLC_FCS30D data were regridded, could be 

used for georeferencing the 10-km coastal zone for each county. If, for example, a reference point of 

a particular cell is within the polygon that represents 10-km coastal zone, for that cell in the Parquet 

file a categorical attribute with country name can be saved. Now in the Parquet file we would have 

one column with cell indices, one column for 2010 and one for 2020 with binary attribute 

representing whether that cell corresponds to the pixel that was in GLC_FCS30D classified as built-

up land cover class for 2010 or for 2020, respectively, and one column that contains country name if 

that cell’s reference point is within that country’s 10-km coastal zone. From data in this table, and 

without a direct reference to cell geometry, it is now possible to efficiently aggregate data on a country 

level and perform calculations of built-up area change. Robertson et al. (2020) suggested a hybrid 

relational/key-value database model for storing data that are georeferenced in DGGS. They have also 

shown that common GIS operations such as constructing buffer zones, or interesting vector 

polygons, are more efficient when performed on their model than when performed according to 
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standard procedures on a vector data model. Martin-Segura et al. (2024) proposed a method for 

storing rHEALPix DGGS data in a GeoTIFF raster data format. This GeoTIFF raster is 

georeferenced in a (n, s)-rHEALPix map projection plane, which means that if it is aligned with the 

rHEALPix grid, each square pixel corresponds to one DGGS square cell.  The benefit of this 

approach is that output GeoTIFF file can be directly used with advanced algorithms for raster data 

processing, but with a drawback that GeoTIFF format does not allow storing some more complex 

attribute data types that, for example, Parquet format support. 

From this discussion, it is evident that DGGS is a distinct geospatial data model; it is different 

from vector and raster models, but it also has some characteristics of both. It is similar to a raster 

model because they both represent spatial data using a grid structure and it is similar to the vector 

model because each cell can be viewed as a vector polygon with assigned various attributes. It is also 

different from the vector and raster models as it can additionally be viewed as a georeferencing 

framework in which cell identifiers are used for positioning instead of coordinates. This means that 

each cell can be treated as a placeholder for storing spatial data. Various categories of spatial data (e.g., 

land cover data, administrative boundaries, land surface temperature data, point-object (for example, 

communication antennas) locations, etc.) can all be stored within a single file (or table in a database) 

without the need to separate them into different layers. Therefore, in a sense, we can transition from 

layer-oriented way of thinking to a cell-oriented. With DGGS, we can also transition from viewing 

GIS as a collection of flat digital maps to viewing it as a digital globe (Goodchild, 2018), where each 

cell contains various thematic data. 
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6 Conclusion and scientific contribution 

In this thesis, we first gave an overview of various approaches to generating global tessellations or 

grids, with emphasis on approaches that are currently widely used. We then identified the main 

challenges when it comes to handling geospatial, namely land cover data, by using these conventional 

approaches. We further introduced a discrete global grid system (DGGS) as a georeferencing 

framework and geospatial data model that has a potential of eliminating or at least reducing some of 

these challenges. Subsequently, we narrowed our focus on one particular DGGS implementation, 

rHEALPix DGGS, which we found suitable for global land cover data storage and handling. 

We introduced two modifications in the rHEALPix DGGS that we considered important. 

The first modification is aimed at increasing calculation accuracy and reducing processing time when 

converting geodetic to authalic latitude and vice versa. This conversion is crucial for constructing the 

rHEALPix grid on the ellipsoids of revolution. The second modification was related to the 

enhancement of the rHEALPix DGGS cell shape stability. This modification results in grid 

structures on the sphere or ellipsoid that are different from the rHEALPix DGGS grids and thus we 

refer to it as QPix DGGS. 

The results indicate that both modifications enhanced the rHEALPix DGGS, at least from 

our perspective. Furthermore, we also quantitatively compared QPix DGGS and currently widely 

used, traditional global gridding approaches and found that QPix DGGS enables global gridding that 

exhibits higher uniformity than traditional approaches. Finally, we demonstrated the application of 

the rHEALPix and QPix DGGSs on calculating land cover change between two years. 

Regarding the research hypothesis that were stated in Section 1.2, we state the following. The 

first hypothesis was: “The discrete global grid system can be used to store and handle global land cover 

data while eliminating the shortcomings of the traditionally used two-dimensional raster geospatial 

data model.” This hypothesis is confirmed. The fact that DGGS can be used to store and handle 

global land cover data is shown in Chapter 5. Although in this chapter analysis was not performed 

on a full global scale, calculations that were performed on a global level in some other parts of the 

thesis, for example calculations of cell compactness values (Sections 3.4 and 3.5.2), indicates that 
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extending analysis to the global level will not bring any differences, except for, of course, a drastically 

higher demand for computational resources. Regarding the second part of this hypothesis—

addressing the limitations of the traditionally used two-dimensional raster geospatial data model, it 

was qualitatively discussed in Section 3.1 and to a certain level in Sections 4.3 and 5.3. Section 4.3 

additionally provides a quantitative comparison between DGGS-based (specifically, QPix DGGS) 

and two traditional global gridding approaches that are based on flat raster data models. One is based 

on a raster model that is georeferenced in a geographic 2D CRS and thus defines an equiangular 

quadrilateral global tessellation, and another that is based on a raster model in projected CRS that is 

based on the interrupted Goode Homolosine map projection. The results showed that DGGS-based 

global gridding approach provides a more uniform global tessellation. Therefore, DGGS not only 

solves some of the problems that are related to handling geospatial (land cover) data in the form of a 

2D raster data model, but it also provides a framework for more uniform global gridding, i.e., more 

uniform global sampling. This is mainly because DGGS georeferences data directly on the sphere or 

ellipsoid and thus enables storing and handling geospatial data in the form of digital globes, rather 

than in the form of digital maps. 

The second hypothesis stated: “It is possible to develop a DGGS in which cells are 

quadrangles of constant area and whose shapes are more stable than that in the currently developed 

systems.” This hypothesis is also confirmed. We imposed a requirement of quadrangular, constant 

area cells because we found global grid with such characteristics suitable for storage and handling land 

cover data. Briefly, constant, or equal are cells, simplify areal statistics calculations and ensure that all 

cells have the same probability of contributing the analysis. DGGS grids that have quadrangular cells 

are interesting for two main reasons—first, remote sensing satellite sensor detectors in general have 

quadrangular shape and second, already developed advanced algorithms for processing raster data can 

be directly or with slight modifications applied on these grids. Starting from the research by Kmoch, 

Vasilyev et al. (2022), we identified rHEALPix DGGS as the only DGGS implementation that is, 

according to our requirements, suitable for global land cover data storage and handling (i.e., almost 

all of its cells are quadrangles of equal area). DGGS that we refer to as QPix DGGS is in fact a modified 

version of the rHEALPix DGGS. In QPix DGGS not just most, but all cells are quadrangles on 

sphere or ellipsoid and they all have, at least analytically, the same area (Section 3.3.2). Based on results 
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in Section 3.5.2 and discussion in Section 4.2.1, it was confirmed that QPix DGGS exhibits a more 

stable cell shapes than rHEALPix DGGS. This means that QPix DGGS meets the criteria of the 

second hypothesis. 

The main scientific contribution of this doctoral thesis is the development of the DGGS as a 

geospatial data model and georeferencing framework that is suitable for global land cover data storage 

and handling. This scientific contribution can be further divided into three distinct components: 

1. Modification of the mathematical basis of the existing DGGS implementation (specifically, 

rHEALPix DGGS) and its improvement by increasing the accuracy and speed of the area-

preserving mapping of an ellipsoid to a sphere and vice versa. (Sections 3.3.1, 3.5.1, and 4.1) 

2. Development of a DGGS that has cells that are quadrangles of equal area and whose cell-

shape stability is overall higher than in currently available DGGS implementations. (Sections 

3.3.23.5.2, and 4.2) 

3. Improvement of a currently common approach in global land cover data storage and 

handling by transition from the two-dimensional raster data model to the DGGS. (Sections 

3.1 and 4.3 and Chapter 5, especially Section 5.3) 
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Appendix A: Visualizations 

A.1 Orthographic visualizations of 1-to-4 refinement of the rHEALPix and QPix DGGSs 

 

rHEALPix (resolution 0) 

 

QPix (resolution 0) 

 

rHEALPix (resolution 1) 

 

QPix (resolution 1) 
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rHEALPix (resolution 2) 

 

QPix (resolution 2) 

 

rHEALPix (resolution 3) 

 

QPix (resolution 3) 
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rHEALPix (resolution 4) 

 

QPix (resolution 4) 

A.2 Orthographic visualizations of 1-to-9 refinement of the rHEALPix and QPix DGGSs 

 

rHEALPix (resolution 0) 

 

QPix (resolution 0) 
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rHEALPix (resolution 1) 
 

QPix (resolution 1) 

 

rHEALPix (resolution 2) 

 

QPix (resolution 2) 
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rHEALPix (resolution 3) 
 

QPix (resolution 3) 
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A.3 Small-scale visualizations of the rHEALPix and QPix DGGS grids 
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A.4 rHEALPix and QPix DGGS cells in a corresponding map projection plane 
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A.5 rHEALPix and QPix DGGS cells in Robinson map projection 
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B DGGS cell areas for various refinement ratios 

The table below shows areas of the rHEALPix and QPix DGGS cells for various refinement ratios 

(parameter Nside from 2 to 20) across resolutions. Along with the area, square root of area is also 

provided, which can serve as a means for approximately determining cell sizes. Data are provided only 

for resolutions that include cells of sizes between 10 km and 1 cm. We did not include larger cells 

because we do not find them relevant from the land cover data perspective. The 1-cm cells are in 

general also not relevant from the land cover data perspective, especially not global one, however, we 

still included those cells since it might be interesting to check what would be the combination of 

resolution and parameter Nside that will yield cells that are suitable for some more precise application. 

All data in table below are based on the WGS 84 ellipsoid (EPSG, n.d.-a).

Res. Area (m2) Sqrt of area (m) 
Nside = 2 
9 324 290 988.75 18 008.08 
10 81 072 747.19 9 004.04 
11 20 268 186.80 4 502.02 
12 5 067 046.70 2 251.01 
13 1 266 761.67 1 125.51 
14 316 690.42 562.75 
15 79 172.60 281.38 
16 19 793.15 140.69 
17 4 948.29 70.34 
18 1 237.07 35.17 
19 309.27 17.59 
20 77.32 8.79 
21 19.33 4.40 
22 4.83 2.20 
23 1.21 1.10 
24 0.30 0.55 
25 0.08 0.27 
26 0.02 0.14 
27 0.0047 0.07 
28 0.0012 0.03 
29 0.0003 0.02 
30 0.0001 0.01 
   

Res. Area (m2) Sqrt of area (m) 
Nside = 3 
6 159 963 075.78 12 647.65 
7 17 773 675.09 4 215.88 
8 1 974 852.79 1 405.29 
9 219 428.09 468.43 
10 24 380.90 156.14 
11 2 708.99 52.05 
12 301.00 17.35 
13 33.44 5.78 
14 3.72 1.93 
15 0.41 0.64 
16 0.05 0.21 
17 0.01 0.07 
18 0.0006 0.02 
19 0.0001 0.01 
Nside = 4 
4 1 297 163 954.99 36 016.16 
5 81 072 747.19 9 004.04 
6 5 067 046.70 2 251.01 
7 316 690.42 562.75 
8 19 793.15 140.69 
9 1 237.07 35.17 
10 77.32 8.79 
11 4.83 2.20 
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Res. Area (m2) Sqrt of area (m) 
12 0.30 0.55 
13 0.02 0.14 
14 0.0012 0.03 
15 0.0001 0.01 
Nside = 5 
4 217 627 998.60 14 752.22 
5 8 705 119.94 2 950.44 
6 348 204.80 590.09 
7 13 928.19 118.02 
8 557.13 23.60 
9 22.29 4.72 
10 0.89 0.94 
11 0.04 0.19 
12 0.0014 0.04 
13 0.0001 0.01 
Nside = 6 
3 1 822 079 410.02 42 685.82 
4 50 613 316.95 7 114.30 
5 1 405 925.47 1 185.72 
6 39 053.49 197.62 
7 1 084.82 32.94 
8 30.13 5.49 
9 0.84 0.91 
10 0.02 0.15 
11 0.00065 0.03 
12 0.00002 0.004 
Nside = 7 
3 722 581 041.52 26 880.87 
4 14 746 551.87 3 840.12 
5 300 950.04 548.59 
6 6 141.84 78.37 
7 125.34 11.20 
8 2.56 1.60 
9 0.05 0.23 
10 0.00107 0.03 
11 0.00002 0.005 
Nside = 8 
3 324 290 988.75 18 008.08 
4 5 067 046.70 2 251.01 

Res. Area (m2) Sqrt of area (m) 
5 79 172.60 281.38 
6 1 237.07 35.17 
7 19.33 4.40 
8 0.30 0.55 
9 0.0047 0.07 
10 0.0001 0.01 
Nside = 9 
3 159 963 075.78 12 647.65 
4 1 974 852.79 1 405.29 
5 24 380.90 156.14 
6 301.00 17.35 
7 3.72 1.93 
8 0.05 0.21 
9 0.00057 0.02 
10 0.00001 0.003 
Nside = 10 
2 8 501 093 695.40 92 201.38 
3 85 010 936.95 9 220.14 
4 850 109.37 922.01 
5 8 501.09 92.20 
6 85.01 9.22 
7 0.85 0.92 
8 0.01 0.09 
9 0.0001 0.01 
Nside = 11 
2 5 806 361 379.28 76 199.48 
3 47 986 457.68 6 927.23 
4 396 582.29 629.75 
5 3 277.54 57.25 
6 27.09 5.20 
7 0.22 0.47 
8 0.00185 0.04 
9 0.00002 0.004 
Nside = 12 
2 4 099 678 672.55 64 028.73 
3 28 469 990.78 5 335.73 
4 197 708.27 444.64 
5 1 372.97 37.05 
6 9.53 3.09 
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Res. Area (m2) Sqrt of area (m) 
7 0.07 0.26 
8 0.000460 0.02 
9 0.000003 0.002 
Nside = 13 
2 2 976 469 204.65 54 557.03 
3 17 612 243.81 4 196.69 
4 104 214.46 322.82 
5 616.65 24.83 
6 3.65 1.91 
7 0.02 0.15 
8 0.0001 0.01 
Nside = 14 
2 2 212 904 439.66 47 041.52 
3 11 290 328.77 3 360.11 
4 57 603.72 240.01 
5 293.90 17.14 
6 1.50 1.22 
7 0.01 0.09 
8 0.00004 0.01 
Nside = 15 
2 1 679 228 384.28 40 978.39 
3 7 463 237.26 2 731.89 
4 33 169.94 182.13 
5 147.42 12.14 
6 0.66 0.81 
7 0.00291 0.05 
8 0.00001 0.004 
Nside = 16 
2 1 297 163 954.99 36 016.16 
3 5 067 046.70 2 251.01 
4 19 793.15 140.69 
5 77.32 8.79 
6 0.30 0.55 
7 0.001180 0.03 
8 0.000005 0.002 
   

Res. Area (m2) Sqrt of area (m) 
Nside = 17 
2 1 017 839 069.86 31 903.59 
3 3 521 934.50 1 876.68 
4 12 186.62 110.39 
5 42.17 6.49 
6 0.15 0.38 
7 0.000505 0.02 
8 0.000002 0.001 
Nside = 18 
2 809 813 071.12 28 457.21 
3 2 499 423.06 1 580.96 
4 7 714.27 87.83 
5 23.81 4.88 
6 0.07 0.27 
7 0.000227 0.02 
8 0.000001 0.001 
Nside = 19 
2 652 319 556.74 25 540.55 
3 1 806 979.38 1 344.24 
4 5 005.48 70.75 
5 13.87 3.72 
6 0.04 0.20 
7 0.0001 0.01 
Nside = 20 
2 531 318 355.96 23 050.34 
3 1 328 295.89 1 152.52 
4 3 320.74 57.63 
5 8.30 2.88 
6 0.02 0.14 
7 0.0001 0.01 
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